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Urban highways are common, especially in the US, making cities more
car-centric. They promise the annihilation of distance but obstruct
pedestrian mobility, thus playing a key role in limiting social interac-
tions locally. Although this limiting role is widely acknowledged in
urban studies, the quantitative relationship between urban highways
and social ties is barely tested. Here we define a Barrier Score that
relates massive, geolocated online social network data to highways
in the 50 largest US cities. At the unprecedented granularity of indi-
vidual social ties, we show that urban highways are associated with
decreased social connectivity. This barrier effect is especially strong
for short distances and consistent with historical cases of highways
that were built to purposefully disrupt or isolate Black neighborhoods.
By combining spatial infrastructure with social tie data, our method
adds a new dimension to demographic studies of social segregation.
Our study can inform reparative planning for an evidence-based re-
duction of spatial inequality, and more generally, support a better
integration of the social fabric in urban planning.

social network | segregation | urban data science

C ities are hubs of concentrated social capital that can
foster diversity and innovation (1, 2). However, this po-

tential is threatened by spatial fragmentation through built
infrastructure that can separate neighborhoods (3, 4), exac-
erbate inequalities (5, 6), and contribute to segregation (7).
Among various types of barriers fragmenting urban areas,
roads designed for motorized tra�c are the most ubiquitous,
especially highways (4, 8, 9). Since the 1960s, urban planners
have theorized that high-tra�c roads reduce opportunities
for creating and maintaining social ties across divided neigh-
borhoods (10), thus undermining the social cohesion essential
for the development of thriving communities. This premise
lies at the core of contemporary urban planning research and
interventions (11, 12) that strive to meet the UN’s sustainable
development goal of “making cities and human settlements
inclusive, safe, resilient and sustainable” (13).

Despite its significance in urban planning theories, the as-
sociation between high-tra�c roads and reduced social connec-
tivity has never been measured empirically, with the notable
exception of a few small-scale, survey-based studies (14, 15).
Previous quantitative research in this area, constrained by
the scarcity of geo-referenced social network data (16, 17),
has focused instead on measuring socio-economic segregation
in cities. This goal has been achieved either by using static
demographic data (7, 18) or, more recently, through mobility
data (19–21), with only sporadic attempts to link segregation
to urban barriers (6, 22). While highly valuable, such previous
research could not explicitly consider social ties. However, pro-
viding an explicit, quantitative estimation of the barrier e�ect
of di�erent roads in curbing social ties is crucial for guiding
evidence-based plans of restorative urban interventions and for
prioritizing them according to their estimated benefits (23).

To fill this gap, we introduce a method to systematically

quantify the association between highways and social ties at
multiple scales, ranging from individual highway segments to
entire metropolitan areas. We focus on the network of urban
highways in the US. This highway network o�ers a compelling
subject for the study of barrier e�ects: with a cost of at least 1.4
trillion USD (24), US highways were built to bridge city centers
and newly created suburbs; simultaneously, they displaced
an estimated 1 million people from their neighborhoods and
today pose hard-to-cross physical barriers to pedestrians and
cyclists (4, 25).

Onto this network of urban highways within the 50 largest
metropolitan areas in the US, we overlay a massive geolocated
social network of ties between individuals who follow each
other on Twitter (26). We compute a Barrier Score which
quantifies the reduction in the number of social ties crossing
highways, comparing the empirical crossings with a null model
that makes ties oblivious to highways. The distribution of
Barrier Scores reveals that in all 50 cities, the presence of high-
ways consistently correlates with reduced social connectivity
compared to the null model, showing that urban highways
are barriers to social ties. This reduction is stronger between
people living closer to each other, peaking at distances below
5 km in most cities and fading beyond 20 km.

Notoriously, urban highways in the US have been instru-
mentalized for government-backed racial segregation, creat-
ing social divides between communities that persist to this
day (9, 27). We therefore revisit several highways in US cities
that are well-documented for their historic role in racial seg-
regation, finding potential evidence for long-lasting e�ects
several decades after their construction, by measuring high
Barrier Scores in contemporary social networks.

Significance Statement

Highways are physical barriers that cut opportunities for social
connections, but the magnitude of this effect has not been quan-
tified. Such quantitative evidence would enable policy-makers
to prioritize interventions that reconnect urban communities
– an urgent need in many US cities. Here we relate urban
highways in the 50 largest US cities with massive, geolocated
online social network data to quantify the decrease in social
connectivity associated with urban highways. We find that this
barrier effect is strong in all 50 cities, and particularly prominent
over shorter distances. We also confirm this effect for high-
ways that are historically associated with racial segregation.
Our research demonstrates with unprecedented granularity the
long-lasting impact of decades-old infrastructure on society and
provides tools for evidence-based remedies.

†To whom correspondence should be addressed. E-mail: luai@itu.dk

Aiello et al. April 19, 2024 | 1

ar
X

iv
:2

40
4.

11
59

6v
2 

 [p
hy

si
cs

.so
c-

ph
]  

18
 A

pr
 2

02
4



DRAFT

Results

Our starting point is a large collection of Twitter user activity
from 2012-2013 (26) that contains the approximate home loca-
tions of almost 1M Twitter users living within the boundaries
of the 50 most populous metropolitan areas in the US. These
users are connected by more than 2.7M social ties represent-
ing mutual followership (28). Fig. SI1 and Table SI1 provide
detailed statistics on the data. To this social tie data we re-
late urban highway networks extracted from OpenStreetMap
(OSM). See details in Materials and Methods.

Figure 1A shows a small data sample to illustrate how
we relate social ties to highway data. In this example of a
particular highway section i, we count social ties crossing it
ci = 94 times. Ideally, quantifying the correlation between
the presence of a highway and the social ties crossing it would
require to compare the frequency of social ties intersecting
the highway in the empirical data against the same frequency
from data collected in a hypothetical counterfactual scenario
without highways. To approximate this ideal setting using
observational data only, we construct a null model of the social
network and compare the observed network patterns to this
randomized setting (Fig. 1B). Our null model rewires social
ties by preserving the original degree of nodes, the distance
between connected users, and the tendency of creating ties with
people living in densely populated areas (Fig. SI3), known
as the spatial gravity law (29). This model preserves the
fundamental properties of the original social network with
minimal error (Fig. SI4) while disrupting any correlation with
highway locations, as the model is oblivious to them. Figure 1C

shows the rewired version of the example ties from Fig. 1A.
In this example, we now count these null model ties crossing
the highway section cnull

i = 152 times.
Using this null model, we define the Highway Barrier Score

Bi = cnull
i ≠ci

ci
for a highway section i as the relative di�erence

in the number of social ties crossing the section in the null
model (cnull

i ) versus the empirical data (ci). This score reflects
the hypothetical increase in social ties crossing the path of the
highway in its absence. Positive scores indicate that highways
are associated with reduced social connectivity across the
regions they bisect. In our example (Fig. 1D), the Highway
Barrier Score of Bi = 152≠94

94 = +62% means that in a world
where social connections are independent of the presence of
highways, there are 62% more social ties crossing the highway
section i.

Generalizing the Highway Barrier Score Bi to a whole city,
we define the Barrier Score B which aggregates the local
signals across all highways and social ties over the entire
metropolitan area, measuring the average increase in highway
crossings per social tie in the null model relative to the observed
data. This aggregate score captures a wide range of social tie
distances up to 10 km and normalizes them appropriately; see
Eq. 3 in Materials and Methods.

Barrier Scores are positive and diminish with distance. The
Barrier Scores B for 50 cities, reported in Fig. 2 Right, con-
sistently show positive values, ranging from +2% in New
York City to +16% in Cleveland, indicating that in general,
highways are associated with fewer social connections in all
considered cities.

Starting from this overall city-wide score B, let us zoom
back in, still considering all of a city’s highways but limiting

D Barrier Score

B = 
152-94

94

= +62%

Social tie

Rewired tie

B Rewiring

152 crosses

C Null model ties

A Social ties

94 crosses

i

Fig. 1. The Highway Barrier Score measures the association between highways
and social ties crossing them. Calculating the Barrier Score Bi of a highway
section i follows four steps. The illustrated highway section consists of highway I-94
and the 8 Mile Road in Detroit. (A) Social ties: Count the number of times ci = 94
that social ties (grey) between home locations of individuals (grey dots) cross the
highway i (red). (B) Rewiring: A spatial null model randomly rewires all social ties
within a distance ring with a radius equal to the length of the original social tie. Within
the ring, a random node is selected for rewiring with probability proportional to the
local user population density, to reflect the spatial gravity law. The rewired null model
ties remove any relationship between ties and highways because the rewiring is
agnostic to highways. (C) Null model ties: Count the number of crosses cnull

i = 152
of null model ties with the highway. (D) Highway Barrier Score: Calculate the Highway

Barrier Score as Bi =
cnull

i
≠ci

ci
. In this example, Bi = +62%, which is the

relative increase of social ties crossing the highway if ties were formed disregarding
its presence. For illustration purposes, in this figure we only plot links that are fully
within the view area.
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CITY

CITY

Fig. 2. The Barrier Scores across the top 50 metropolitan areas in the US are
consistently positive. (Left) Heatmap of all Barrier Scores B(d) grouped into
0.5 km bins of social tie distance. Color denotes Barrier Score, square size denotes
the fraction of social ties in each distance band relative to all ties in the city. All cities
have positive Barrier Scores over most distances. Often, there is a smoothly reached
peak distance, for example in Orlando at around dpeak ¥ 1.5 km. The top row
labelled “ALL CITIES” reports the distance-binned Barrier Scores averaged over all
cities. (Right) The bar plot labelled “CITY” reports the Barrier Score B calculated
considering all ties with distances up to 10 km. All results shown are averaged over
15 randomized runs of the null model.

Highway length
(log)

0.469
(0.139)

Barrier Score

Low High

Fragmentation
(log)

−0.257
(0.129)

User population
density

−0.390
(0.139)

Constant 0.000
(0.125)

***

***

**

Fig. 3. Ordinary least squares regression across 50 cities reveals correlations
between the Barrier Score and spatial features. The Barrier Score increases 1) with
increasing highway length, 2) with decreasing fragmentation, 3) with decreasing user
population density. The sketches on the right illustrate low and high values for the
three features that are highway length, fragmentation, and user population density.
Highways and user population are depicted via lines and dots, respectively. Grey
backgrounds illustrate the signs of the regression coefficients. ***: p<0.01, **:
p<0.05, *: p<0.1. Observations: 50. R2

adj = 0.231.

ourselves to social ties connecting users at a fixed distance of
d km. This distance-binned Barrier Score B(d) allows us to
explore how the association between highway presence and
reduced social connectivity varies with the geographical dis-
tance between users. The heatmap in Fig. 2 Left shows Barrier
Scores B(d) calculated for social ties of fixed distance. Gener-
ally, Barrier Scores are positive (red) across most distances.
They tend to peak at a relatively short distance dpeak, for
example, dpeak ¥ 1.5 km in Orlando and dpeak ¥ 3.5 km in
Milwaukee. At greater distances, Barrier Scores gradually
diminish and at times become slightly negative (blue), mean-
ing some highways are associated with a higher probability
of social ties connecting people who live far away from each
other, compared to the null model. Only occasionally, we find
negative Barrier Scores at very short distances.

Regression models substantiate the barrier effect amid other
factors. To explain the city-level variation in Barrier Scores,
we create a parsimonious ordinary least squares model across
the 50 cities with three key explanatory variables, illustrated
in Fig. 3: 1) the total highway length within the metropolitan
area, 2) how much the Twitter user population is fragmented by
highways, as measured by the Highway Fragmentation Index
(Eq. 5 in Materials and Methods), and 3) the user population
density in the metropolitan area as a control variable and
normalizing factor for highway length. We check the model
for robustness in Fig. SI5.

The significant regression coe�cients (Fig. 3) reveal that
cities with high Barrier Scores typically have longer highway
networks (— = 0.469), a user population less fragmented by
highways (— = ≠0.257), and a lower user population den-
sity (— = ≠0.390). These results are intuitively explained
by varying each factor individually while holding the others
constant. First, at same fragmentation and density of the user
population, cities with a longer highway network require more
frequent highway crossings to maintain social connections. Yet,
the number crossings increases more rapidly for the null model

Aiello et al. April 19, 2024 | 3
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Number of social ties (log)

(1) (2) (3) (4) (5)

Nr. of highways crossed (log) ≠0.025úúú ≠0.021úúú

(0.001) (0.001)
Income abs. difference ≠0.019úúú ≠0.018úúú

(0.000) (0.000)
Racial similarity 0.029úúú 0.027úúú

(0.000) (0.000)
Distance (log) ≠0.101úúú ≠0.085úúú ≠0.099úúú ≠0.101úúú ≠0.086úúú

(0.000) (0.001) (0.000) (0.000) (0.001)
User population (product log) 0.029úúú 0.027úúú 0.026úúú 0.026úúú 0.022úúú

(0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.207úúú 0.209úúú 0.226úúú 0.195úúú 0.216úúú

(0.001) (0.001) (0.001) (0.001) (0.001)

Metro fixed effect Yes Yes Yes Yes Yes
Observations 2,668,666 2,668,666 2,668,666 2,668,666 2,668,666
R2 0.042 0.043 0.045 0.047 0.050

Table 1. Ordinary least squares regression models to predict the number of social connections between pairs of census tracts from spatial
and socio-demographic features. All the models include the metropolitan area as fixed effect. Crucially, the number of social ties between two tracts
decreases with the number of highways that are crossed, after controlling for distance, user population, and socio-economic differences between the
tracts. ***: p<0.01, **: p<0.05, *: p<0.1.

than for the real social network, thus yielding higher Barrier
Scores. Second, the negative coe�cient of the fragmentation
variable is consistent with the semantics of our null model:
cities where the user population is concentrated in a few areas
attract social interactions from many peripheral areas (30), as
reflected by the spatial gravity law in the null model. When
these highly populated areas are separated by highways from
the rest of the city, the behavior of the null model is una�ected,
but the likelihood of creating a social tie that crosses a highway
is comparatively lower in the empirical data, thus yielding a
higher Barrier Score. Third, given the same highway length
and spatial fragmentation of people, individuals have fewer
opportunities to form social ties close-by (2). The resulting
longer ties end up crossing more highways in the null model
than in the empirical data.

We now complement our city-level model with multivariate
regression models that describe the variability of social con-
nectivity between census tracts. These fine-grained models
allow us to verify whether the relationship between highways
and social ties holds at a more granular spatial scale while
controlling for local socio-economic characteristics that are
known to a�ect social connections within cities (31). When
considering all possible tracts, many tract pairs have no high-
ways in the space between them or no social ties connecting
them, which makes it impossible to define a Barrier Score
for them. Therefore, instead of considering Barrier Scores,
these fine-grained models predict the observed number of so-
cial ties between pairs of tracts from five variables: 1) the
average number of highways crossed by social ties between
tracts, 2) the di�erence in average household income, 3) a
dummy variable indicating whether the two tracts have the
same racial majority group, and two controls for distance and
user population. The sample behind the models is composed
of all 2,668,666 census tract pairs that are connected by at
least one social tie either in the empirical data or the null
model (Table SI2).

The results confirm the expectation that pairs of tracts
with shorter distance, higher user population, and higher

socio-economic similarity exhibit more social ties. Even af-
ter adjusting for these factors (last model (5) in Table 1), a
significant negative correlation persists between the number
of highways separating tracts and the quantity of social con-
nections (— = ≠0.021). Notably, the e�ect size of highways
is comparable to that of income variables (— = ≠0.018) and
racial similarity (— = 0.027), indicating that highways may
be as influential as socio-economic factors in contributing to
social fragmentation. These results replicate when fitting city-
specific models (Fig. SI6). In SI Section F we explain the
models and variables in greater detail and corroborate the
robustness of our results by experimenting with alternative
models (Tables SI3, SI4).

Furthermore, when examining tract pairs across fixed dis-
tances, we observe that the coe�cient for the number of
highways increases with distance, becoming positive beyond
d = 20 km (Fig. SI7). This pattern is consistent with the di-
minishing Barrier Scores over distance (Fig. 2), and it suggests
that highways represent barriers to social ties predominantly
at shorter spatial scales, while they may foster connectivity at
longer distances.

Barrier Scores are consistent with racial segregation. To high-
light the practical implications of our quantitative findings,
we now frame them within a broader historical context, with a
particular focus on racial residential segregation. Race is only
one of many social categories that can influence the formation
of social connections. However, the Interstate Highway System
– which we study here in the urban context – is highly relevant
for aggravating racial segregation in US cities (32), making the
association of our Barrier Score with racial residential segrega-
tion a compelling case study. Overwhelming historical records
show how urban highway construction in the name of “urban
renewal” has been frequently used as a racist policy toolbox
to purposefully disrupt or isolate Black neighborhoods (33),
together with other de jure segregation tools like redlining
and housing policy (9). Such exclusionary urban policies, put
in place decades ago, have literally cemented racial divides

4 | Aiello et al.
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Fig. 4. Historical case studies of highways associated with racial segregation. Highways are in color, following the color coding of Fig. 2 (red: positive Barrier Score, blue:
negative Barrier Score, white: insufficient data). Brown rectangles denote historically relevant areas. Black dotted areas denote a city’s districts with a black population share in
the upper quartile. (A,B,C) Top 3 Barrier Scores: Cleveland, OH; Orlando, FL; Milwaukee, WI. Top Barrier Scores are consistent with these cities having well-known histories of
highway-related racial segregation. (D,E,F ) Interracial Barriers: Oklahoma City, OK; Cleveland, OH; Austin, TX. The barrier between Black and non-Black neighborhoods are
clearly visible around I-235, the 8 Mile Road, and I-35, respectively. Detroit additionally features intraracial barriers around M-10, I-94, and I-75. (G,H,I) Intraracial barriers:
Columbus, OH; Richmond, VA; Nashville, TN. Here the focus is on historically Black neighborhoods like Hanford Village, Jackson Ward, or Jefferson Street, respectively, that
have been purposefully demolished via highway construction.

in US cities and have therefore not lost any of their societal
relevance today (27, 34). Indeed, the US Department of Trans-
portation acknowledges the issue in its 2023 “Reconnecting
Communities Pilot Program”, an “initiative to reconnect com-
munities that are cut o� from opportunity and burdened by
past transportation infrastructure decisions” (35).

The decisions on where to place new highways within the
urban fabric were often racially motivated, following di�erent
considerations. Highways either could embody a policy aimed
at segregating Black people from the rest of the population
(36), thus forming an interracial barrier; or highways could
be purposefully built through Black neighborhoods, both with
the intention to disrupt them and to avoid disturbances for
white neighborhoods (37), thus forming an intraracial barrier.
As illustrated in Fig. 4, we therefore take a closer look at

three groups of cities: cities with the highest Barrier Scores
(Cleveland, Orlando, Milwaukee, in Fig. 4A-C); cities with
highways known from the historical literature as interracial
barriers (Oklahoma City, Detroit, Austin, in Fig. 4D-F); and
cities with highways known as intraracial barriers (Columbus,
Richmond, Nashville, in Fig. 4G-I ). Strikingly, for all case
studies, highways that are historically associated with racial
segregation also display high Barrier Scores. For each of
these nine cities, we discuss the local historical context of
highway development and its relation to racial segregation in
SI Section L, summarized in the following paragraphs.

All three cities with the highest Barrier Scores, i.e., Cleve-
land, Orlando, and Milwaukee, have an abundant history of
racial segregation by means of infrastructure. Cleveland, the
city with the highest Barrier Score, is one of the poorest and

Aiello et al. April 19, 2024 | 5
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most racially segregated among major US cities (38). Here,
the northern part of I-77 separates majority Black neighbor-
hoods in the east from the rest of the city (Fig. 4A). Orlando
(Fig. 4B), as of today, remains highly segregated along the I-4.
The construction of the I-4 and the Expressway 408 particularly
disrupted the once thriving Black neighborhood of Parramore
(39). Lastly, Milwaukee (Fig. 4C ) is also a highly segregated
city, with majority Black neighborhoods like Bronzeville in
the North and a historically “solidly Polish” South Side (40).
Here, the construction of the I-43 disrupted and displaced
numerous Black communities such as Bronzeville.

Next, we discuss the three cities with highways as interra-
cial barriers. In Oklahoma City (Fig. 4D), the “urban renewal”
highway construction projects had particularly dire impacts
on historically Black neighborhoods such as Deep Deuce (41).
As of today, the I-235 in Oklahoma City remains a clearly
perceived division line between majority Black and majority
white neighborhoods (42). In Detroit (Fig. 4E), the construc-
tion of several highways during “urban renewal” erased and
eroded numerous historically Black neighborhoods such as
Black Bottom and Paradise Valley (43). Here, “expressway
displacement” (43) combined with pronounced discrimination
led to several housing crises over the last decades, severely
impacting the Black population. Lastly, in the city of Austin
(Fig. 4F), the I-35 was built along East Avenue, an intention-
ally enforced segregation line whose impacts are visible up to
this day (44). At the same time, the I-35, for which expansion
plans are currently underway with 4 billion USD allocated
(27, 45), stands out with a high Barrier Score.

Finally, three cities from our case studies are well-known
for their intraracial highway barriers. Columbus (Fig. 4G) is
a particularly startling example of highway construction as
deliberate neighborhood destruction (46), with today’s high-
way routes aligning with former redlining maps. The most
severely impacted neighborhoods like Flytown, Hanford Vil-
lage, or Bronzeville, were economically disadvantaged and
predominantly Black; at the same time, the closeby but pre-
dominantly white, a�uent neighborhood Bexley was spared
from the highways (46, 47). In Richmond (Fig. 4H ), highway
construction and segregationist housing policies interacted to
create a “concentration of racialized poverty” (48) that lasts
until the present day. Richmond’s neighborhood of Jackson
Ward, formerly dubbed “Black Wall Street”, was bisected by
the I-95 and the I-64/I-95 interchange, ultimately leading to
its decline. Finally, in Nashville (Fig. 4I ), the I-40 was routed
through a bustling Black neighborhood without any appraisal
of potential consequences for the community, bisecting the
once-thriving Je�erson Street, and at a larger scale undermin-
ing Black commercial and educational institutions, decisively
contributing to today’s high poverty rates in the area (49).

This historic contextualization is highly relevant in con-
nection with our research. We find for all these nine cities
that historic spatial divides are reflected in our contemporary
analysis of social ties: all investigated highways display high
Barrier Scores. While a broader, systematic investigation that
checks every possible highway section and historical note is
outside of the scope of our research, these findings add an-
other piece of evidence consistent with the established concept
that urban highways in the US have a strong relation with
government-backed racial segregation (9). Now our research
additionally shows that reduced social connectivity in the

presence of highways can be quantitatively detected at high

resolution.

Discussion and conclusion

To gauge the robustness of our results, we conduct three
experiments. First, to check that high Barrier Scores are
specific to highways among all street types, we replicate the
analysis on other categories of roadways. While these road
types also yield positive Barrier Scores, they are markedly
lower than those associated with highways (Fig. SI8). For
example, for the lowest distance d = 0.5 km, B(d) for highways
is around +12%, while it is +8% for primary roads, +5% for
secondary roads, and +4% for residential streets. The B(d)
values decrease with distance and retain this order. Lower
Barrier Scores for less tra�cked streets are intuitive, as such
streets can be easier crossed on foot, corroborating urban
planning literature which suggests that the traversability of
streets influences social connectivity (3, 10).

Second, we check whether the higher Barrier Scores for
highways might be due to their lower total length compared
to other street types. To control for this length imbalance, we
recalculate the Barrier Scores using a simulated, randomized
version of the highway network that preserves the total length
of highways but alters their spatial distribution (see SI Sec-
tion I). The comparison between empirical and randomized
highway layouts reveals significantly reduced Barrier Scores
in the randomized scenarios (Fig. SI9), confirming that the
spatial positioning of highways plays a more important role
than their total length.

Third, we replicate our findings on a distinct social network:
Gowalla. It is a location-based social network platform where
users connect with friends and share their own location with
them through check-ins (50). The Gowalla dataset contains
five cities with su�cient data coverage (Table SI5). The Barrier
Scores derived from Gowalla ties are notably higher than those
from Twitter across all distances (Fig. SI10). Considering
Gowalla’s emphasis on fostering real-life interactions among
users (its mission being “keep up with your friends in the real
world.”), it is reasonable to infer that this platform’s social ties
might be inherently stronger than the ties on Twitter which
does not have this emphasis. This observation suggests that
the interplay between highways and social connection may be
even more pronounced for stronger social ties.

Being first of its kind, our work does not cover additional
aspects of the relationship between social connectivity and
spatial features open for future research. The relationship
between highways and social connectivity is potentially sub-
ject to confounding factors such as social dynamics, terrain
morphology, or public transit (6, 7, 51). The Barrier Score we
derived likely reflects a composite influence of these elements,
and more refined spatial null models could help to disentangle
them. Furthermore, our null model provides a somewhat re-
ductive perspective on the interplay between social networks
and highways. For example, it does not distinguish cases where
a highway walls o� two individuals from cases where it facili-
tates them to connect. Additionally, the study’s observational
design means that our null model is limited to considering
rewiring of existing social ties, so it cannot account for the
possibility of ties appearing or vanishing in the absence of
highways. Lastly, our reliance on social media data limits rep-
resentativeness (52), a well-documented issue in social media
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research (53). Although we found a strong correlation between
user volume and user population size across the 50 cities stud-
ied, and our data covers a set of tracts that is representative
of the distribution of income (Fig. SI2), our findings may not
be generalizable to the entire population of these areas.

In conclusion, by going beyond demographic approaches,
observing social ties explicitly, we have shown that there is a
quantifiable association between urban highways and reduced
levels of social connectivity, especially at short distances. Our
analysis adds a highly granular perspective to former work,
corroborating and quantifying the intuition that urban high-
ways are indeed barriers to social ties. At the same time our
analysis also indicates that highways can facilitate connecting
people at larger distances. However, this potential benefit
comes with perpetuating car dependency via sprawl and in-
duced demand (54), and with a wide array of considerable
harms (25) including tra�c violence, environmental damage,
social isolation and injustice. The social harms are corrobo-
rated by our nine historical case studies which illustrate that
highway barrier e�ects may be considerable and long-lasting.

To be clear, our approach is so far strictly correlational and
cannot establish causality: from static data it is impossible
to determine how thinned-out social ties across a highway
section already were before its construction, say because of
an existing racial divide (9, 43); or to which extent a new
highway caused social ties to thin out. Scrutinizing causal-
ity would require longitudinal data, for example before and
after the construction or removal of an urban highway. Nev-
ertheless, within the historical context, our results paint a
clear picture. Thus, our research could already help remediate
previous political failures (9, 36) and enrich the debate on
contemporary highway policies (27, 35, 45), to account for
exclusionary e�ects of infrastructure, and to inform reparative
justice approaches (23, 55). More generally, our research con-
tributes to a more careful, evidence-based consideration of the
social fabric in urban planning.

Materials and Methods

Social network. We rely on an existing collection of geo-referenced
tweets posted between 2012 and 2013, when the Twitter mobile app’s
default setting was to annotate all tweets with the precise geographic
coordinates at the time of posting. Previous work (26) used the
friend-of-friend algorithm to identify the home locations of users with
a su�cient number of posts with high accuracy. The dataset comes
with the full network of mutual followership among all users whose
home location is within the 50 most populous metropolitan areas
in the United States. Overall, the network contains 982,459 users
and 2,711,185 social ties between them. This dataset has proven
to be a reliable resource to study spatial social networks within
cities (28, 56). The home location estimation procedure, present
statistics on the data, and its representativeness are described in
detail in SI Sections A and B.

From the spatial perspective, we model social ties as straight
segments connecting the home locations of two users. We considered
the shortest path between home locations as an alternative spatial
representation and found very similar results, as the length of the
straight segments strongly correlates with walking distance in all
cities (fl > 0.95, see Fig. SI11).

Street network. We obtain the street network data for all 50
metropolitan areas of this study from the open and crowd-sourced
platform OpenStreetMap (OSM) (57). We refer to the highway
network as the network of highways (freeways, motorways, inter-
states), and obtain the corresponding data from OSM by filtering
street network segments by their highway tag attribute. The street

network geometries are further simplified with OSMnx, and for the
case studies, manually in QGIS (see SI Section C for details on
OSM queries and simplification). To determine the number of social
ties crossing highways, we perform a spatial join between the social
ties and the highway network, and obtain the intersection points.

Spatial null model. Our null model is based on the Directed Con-
figuration Model (DCM) (58), a widely-used graph randomization
method that re-wires links at random while preserving the nodes’
degree. To also preserve the spatial patterns of connectivity, we
augment the DCM with the spatial gravity model, an empirical
relationship stating that the volume of social connections between
two areas is proportional to the number of inhabitants, and inversely
proportional to their distance (59). In practice, we follow an itera-
tive procedure in which each tie (i, j) is rewired to form a new tie
(i, k) such as user k is 1) approximately at the same distance from i

as j is (dij = dik), and 2) it is selected among all candidate nodes
with probability that is proportional to the density of other users
around it. Details on the algorithm and its properties are discussed
in the Supplementary Information.

Overall, the algorithm generates a random social network that
retains both spatial and social connectivity patterns of the original
data, while disregarding any spatial elements between the two
endpoints of a social connection.

Barrier Score. Consider a set E of social ties (i, j), each characterized
by the Euclidean distance dij between user i and user j. We denote
with cij the number of highways that a tie (i, j) crosses. We count
the average number of highways that ties in E cross by unit distance:

cE =
1

|E|

ÿ

(i,j)œE

cij

dij
. [1]

Intuitively, to calculate the Barrier Score, one could directly contrast
the number of crosses in the real social network cE with the same
number calculated in the randomized null model c

null
E . In practice,

the relationship between cE and c
null
E varies considerably when

considering social ties across di�erent ranges of length, and tends
to converge to 0 when all long-range social ties are considered (as
hinted at by Fig. 2). Therefore, to characterize cities with a score
that represents all distances equally, we first compute a distance-
binned Barrier Score for ties connecting users whose distance is
within a distance bin d:

B(d) =
c

null
E (d) ≠ cE(d)

cE(d)
, [2]

and then compute a final Barrier Score as an average over all k

distance bins up to a maximum distance D:

BÆ(D) =
1
k

Dÿ

d=0

B(d). [3]

We set the width of distance bins to 0.5 km; therefore, for example,
B(2) considers all social ties of length between 2 km and 2.5 km. To
define the city-wide Barrier Score in the main results we use 10 km
as the reference value of D and refer to it simply as B := BÆ(10).
A sensitivity analysis of the results of regression models across
di�erent values of D is reported in SI Section G.

Spatial fragmentation. We measure the spatial fragmentation of a
metropolitan area by highways using a modified version of the
Railroad Division Index (RDI) (5):

RDI = 1 ≠
ÿ

i

1 areai

areatotal

22
[4]

where areai is the area of the i-th subunit of fragmented space,
enclosed by highways. In line with the RDI definition, we derive
the subunits within a city by first combining the highway network
and the metropolitan urban area boundaries and then polygonizing
their spatial union (60). To account for user population density, we
weight areas by the number of users living in them, and define the
Highway Fragmentation Index as:

HFI = 1 ≠
ÿ

i

1 usersi

userstotal

22
[5]
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A minimum fragmentation index of 0 describes a city where all
residents could reach each other without crossing any highway,
whereas a maximum fragmentation close to 1 denotes a city where
the user population is spread uniformly across areas that are enclosed
by highways.
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