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S1 Defining physics publications in non-physics journals

We identify physics publications in journals which are not explicitly labelled as physics journals

bymeans of a method first used in Refs.1,2 Suchmethod allows us to reconstruct a community

in a network when only a small fraction of nodes are explicitly labelled as belonging to the

community. In our case, the hypothesis is that physics papers can be found not only in conven-

tional physics journals (core physics papers) but also in other venues (interdisciplinary physics

papers). It is possible to identify such interdisciplinary papers if they have a significant number

of connections (references or citations) to conventional physics venues, applying the concep-

tual framework of label propagation algorithms.3 In Ref.1 the algorithmwas first applied to an

old version of theWeb of Science (WoS), encoding information about scientific publications

until 2012 and based on an old database structure. Here we reapply themethod on an updated

version of WoS purchased from Clarivate Analytics, encoding information about publications

until 2017, and using a new database structure, with a different identification system for papers



among other things. We obtain a new physics dataset of papers, which we want to further

characterise by identifying the physics subfields they belong to. For this reason, all papers in

the dataset except those of journals published by the American Physical Society (APS) journals,

are then considered to be assigned a given subfield and be part of our physics communities

analysis. The label propagationmethod for the identification of subfields, illustrated in detail in

Section S3, is a modified implementation of the algorithm to identify physics papers presented

next.

The algorithm to construct the physics dataset works in the following way. Let us consider a

directed network with N nodes, for instance the citation network described by theWoS dataset,

where nodes are scientific publications, and a direct link between publication i and publication

j exists if paper i cites paper j. Each node i has an in-degree kIN (number of citations) and

an out-degree kOUT (number of references). Nodes with kIN = 0 and kOUT = 0 are publications

without references and citations and are isolated nodes in the network. Additionally, in our

case each node i is characterised by a variable ti corresponding to the time of publication of

the article. Themethod is based on an iterative process where at each step s the N nodes are

assigned to three sets: the core setCs, the tangent set Ts and the external set Es. The core setCs

includes the nodes that are considered to be part of the target community at a given time step

s by the algorithm. In our case, at the step s = 0,C0 includes all articles published in physics

journals. The purpose of this initial core set is to act as a seed to detect other nodes that are

part of the community, even if initially they are not classified as such, and that will be iteratively

included inCs at subsequent steps s > 0. The second set is the tangent set Ts, and contains all

the nodes outside the core setCs that have at least one (ingoing or outgoing) connection to a

node withinCs. The third set is the external set Es, and corresponds to all nodes outside the

core setCs that share no connection with nodes withinCs, and therefore have no chance to be

included into the core at the subsequent step s+1. By definition we haveCs∪Ts∪Es = N and

Cs∩Ts∩Es = /0.

The basic idea of the algorithm is to iteratively extend the target communityCs intoCs+1 by

adding candidate nodes fromTs that are statistically expected to bepart of the community based

on their connections. In our case this corresponds to identifying as physics all scientific papers

which are not published in physics journals, but whose patterns of references and citations are

indistinguishable from those published in the traditional physics venues. The purpose of the

2/26



tangent set Ts is to contain all candidate nodes, i.e. nodes that might subsequently be added to

the target communityCs at step s after inspection of their incoming and outgoing links. To do

so, at each step s and for each node iwe compute two variables: rIN
i,s and rOUT

i,s . These variables

quantify the expectation of a particular node to be part of the target communityCs based on its

incoming citations and outgoing references.

Let us focus first on incoming citations, evaluated through rIN
i,s , where

rIN
i,s =

kIN,
⊙

i,s

k̂IN,
⊙

i,s

. (1)

Here kIN,
⊙

i,s corresponds to the number of incoming links (citations) to node i originating from

nodes in the core Cs. k̂IN,
⊙

i,s , instead, accounts for the expected number of incoming links

from the core in a null model where the real number of incoming and outgoing links of each

node (citations and references of each paper) in the network is fixed. This last constraint

corresponds to consider the directed configuration model ensemble of the original citation

network, meaning that we can write

k̂IN,
⊙

i,s = kIN
i

∑ j∈Cs kOUT
j

∑ j∈N kOUT
j

(2)

where kIN
i denotes the total number of incoming links to node i, and the remaining term cor-

responds to the probability for a link to originate fromCs. As an article i can receive a citation

from another paper j only if the latter is more recent, i.e. t j > ti, we eventually set

k̂IN,
⊙

i,s = kIN
i

∑ j∈Cs|t j>ti kOUT
j

∑ j∈N|t j>ti kOUT
j

. (3)

Similarly, the share of outgoing references are evaluated through rOUT
i,s , where

rOUT
i,s =

kOUT,
⊙

i,s

k̂OUT,
⊙

i,s

, (4)

and

k̂OUT,
⊙

i,s = kOUT
i

∑ j∈Cs|t j<ti kIN
j

∑ j∈N|t j<ti kIN
j
. (5)

A value rIN
i,s > 1 (rOUT

i,s >1) corresponds to a node that ismore likely to reference (be cited from)

nodes from the core than what would be expected at random. At each step s of the process, we
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use the variables rIN
i,s and rOUT

i,s associated to nodes in Ts to produce the updated core setCs+1.

First we add all nodes inCs toCs+1. Then, for each node i ∈ Ts, we add i toCs+1 if we have

rIN
i,s > τ

IN (6)

or

rOUT
i,s > τ

OUT . (7)

The thresholds τ IN and τOUT are fixed based on a parameter p such that the thresholds τ IN and

τOUT correspond respectively to the p− th percentile of the distribution of rIN
i,0 and rOUT

i,0 values

for nodes within the initial core setC0. Once nodes i ∈ Ts satisfying the conditions of Eq.6 or

Eq.7 are added to the core setCs+1, both sets Ts and Es can be updated to Ts+1 and Es+1 from

Cs+1. The process stops whenCs has converged, i.e. when no nodes from Ts can be added to

the core setCs. Note that while the thresholds τ IN and τOUT remain constant during the whole

process, the values rIN
i,s and rOUT

i,s associated to each node iwill change at each iteration, given

the fact that new nodes will incorporate the setCs at each iteration step s. As shown in Ref.,2 in

the case of physics publication in theWoS dataset the algorithmwas run iteratively for 10 steps,

showing fast convergence.

The parameter p is a tolerance parameter, in the sense that it defines theminimal attraction

needed for a node to be incorporated in the growing core. As described in Refs.,1,2 it is possible

to set the value of p by validating the algorithm on all publications of interdisciplinary journals

for which a subset is labelled explicitly as physics. In our case, we use Science (1995-2013) and

PNAS (1915-2013) for this validation. The best trade-off between true positive (92.3%) and true

negative rates (99.6%) was found for p = 10. By running the algorithm on the new version of

theWoS dataset comprised of∼54million papers, with an initial core of∼3.2million articles

published in 294 physics journals, the list of journals being extracted by combining information

fromWikipedia, Scopus and Scimago, we identified∼4.5 million physics publications in non-

physics journals. In Table S1 we report the ten non-physics journals with the highest number

of physics publications (number of papers in brackets), and the ten non-physics journals with

the highest share of physics publications (percentages in brackets). We note the presence of

interdiscisciplinary journals, such asNature, and several materials and chemistry journals. In

themain text we focused our analysis on the period 1985-2015, restricting our dataset to a total

of∼5.6 million publications.
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Rank Journal (number of papers) Journal (percentage of papers)

1 Rev. Sci. Instrum. (41,006) J. SpaceWeather Space Clim. (98.3%)

2 Thin Solid Films (38,316) Quantum Inform. Comput. (97.7%)

3 Surf. Sci. (34,461) J. Hyberbolic Differ. Equ. (93.2%)

4 Nature (33,073) Adv. QuantumChem. (92.8%)

5 J. Alloy. Compd. (31,319) 2DMater. (92.7%)

6 J. Phys. Chem. (29,920) Thin Solid Films (92.2%)

7 J. Am. Chem. Soc. (27,192) J. Laser Micro Nanoeng. (92.2%)

8 Macromolecules (26,377) Surf. Sci. Rep. (91.9%)

9 Electron. Lett. (25,593) IEEE Trans. Nanotechnol. (91.4%)

10 J. Electrochem. Soc. (24,806) Symmetry Integr. Geom. (90.1%)

Table S1. Non-physics journals withmost physics publications and highest percentage of

physics publications identified bymeans of label propagation.

S2 Identifying physics subfields from PACS codes

Despite the WoS dataset provides a classification of core physics publications into different

subfields (see Section S3), such classification is not detailed enough to our scope and, most

importantly, it fails to associate a subfield to publications not in physics journals. For such a

reason, in our work we associated publications to different subfields according to the Physics

and Astronomy Classification Scheme (PACS) by the American Institute of Physics,4 a hierar-

chical classification used by several journals, including papers of the Physical Review Series

published by the American Physical Society between 1977 and 2015. The classification uses

four digits and an extra identifier. The 1-digit identifies 10 different physics subfields, namely:

General (0), The Physics of Elementary Particles and Fields (shortened as HEP, 1), Nuclear

Physics (2), Atomic andMolecular Physics (AMO, 3), Electromagnetism, Optics, Acoustics, Heat

Transfer, Classical Mechanics, and Fluid Dynamics (Classical, 4), Physics of Gases, Plasmas,

and Electric Discharges (Plasma, 5), CondensedMatter: Structural, Mechanical and Thermal

Properties (6), CondensedMatter: Electronic Structure, Electrical, Magnetic, and Optical Prop-

erties (7), Interdisciplinary Physics and Related Areas of Science and Technology (Interdisc, 8),
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Geophysics, Astronomy, and Astrophysics (Astro, 9). Wemerged PACS 6 and 7 into a unique

category namedCondMat, in order tomatch other common physics classifications, such as that

found for the arXiv (see Section S3). We stress that the term interdisciplinary physics, assigned

in Ref.1 to describe physics publications in non-physics journals, is not linked to the PACS 8

of the PACS scheme. In the following, as well as in the main text, the term Interdisciplinary

physics is reserved to identify publications and authors working in this precise subfield of

physics, differently from Ref.1 PACS can be found in the APS dataset, available from the APS

upon request,5 encoding information about all publications appeared in the journals of the

American Physical Society until 2015. Although PACS appeared in 1977, only a small fraction

of the papers were assigned one until they were enforced in 1985. For this reason, we focused

our analysis on the years 1985-2015, for which our dataset has 435,722 papers with at least one

PACS. 5,616 more papers have assigned a PACS but were published before 1985. More in detail,

between 1985-2015 we have 265,549 papers with exactly one 1-digit PACS, 138,176 with two

PACS, 29,806 with three PACS, 2,160 with PACS and 31 with five PACS.

In Fig. S1we report the distributionof the 9 physics subfields for sixwell-established journals

published by the APS, namely the general purpose Physical Review Letters and the specialised

venues Physical Review A - E. Physical Review B (covering condensed matter and materials

physics) andPhysicalReviewC (coveringnuclearphysics) indeedpredominantlypublishpapers

belonging to a single subfield, respectively CondensedMatter and Nuclear Physics. Conversely

Physical Review A (covering atomic, molecular, and optical physics and quantum information),

Physical Review D (covering particles, fields, gravitation, and cosmology) and Physical Review

E (covering statistical, nonlinear, biological, and soft matter physics) publish across a greater

mixture of subfields. As expected, Physical Review Letters, the APS flagship journal, publishes

across all different domains, even though with different frequency.

Similarly to the identification of physics papers in non-physics venues, we use the papers

published in the APS journals as the initial seed to assign subfields to other physics publications

bymeansof label propagation (see SectionS3 for details.). In suchaway,weobtain adata-driven

subfield classification of physics papers in theWoS dataset.

In Fig. S2a we report the proportions of APS papers belonging to a given subfield, and

compare it to that of our newly created dataset. In Fig. S2b we report the distribution of the

number of subfield per paper in the APS between 1985 and 2015, as well as the fraction of
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Figure S1. Subfield distribution for papers published in APS journals. Different APS

journals show different publication patterns across subfields. Physical Review B covers

predominantlyCondMat, and Physical Review C is similarly focused onNuclear. In contrast,

Physical Review A, Physical Review D and Physical Review E do not cover a single, predominant

subfield. Physical Review Letters is themost balanced journals of the APS publishing across all

subfields.

number of papers per subfield over the years (Fig. S2c).

S3 Assigning Physics subfields to Web of Science publications

We propagate physics subfields to physics publications in theWoS dataset based on relevant

patterns of references and citations to the specific subfield(s), adapting themethoddescribed in

the first section of this SI. For each subfieldwe have a different initial core setCα
0 , corresponding

to all publications in the APS publications between 1985 and 2015 associated to a given subfield

α . First, wematched the papers of the APS dataset into theWeb of Science dataset, either via

exact doi matching, or, for when the doi is not available, by using the Levenshtein distance to

compute title similarity. In this second case thematch was accepted if there was at least 90%

string similarity between the titles of two papers in the datasets, and the second best match

had a string similarity at least 5 times worse. In this way we were able tomatch 90% of all the

papers manually assigned to a subfield between 1985 and 2015.

In the original implementation, the thresholds τ IN and τOUT were set by evaluating the

performance of the algorithm on the “ground truth” of physics papers published in interdisci-
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plinary journals such as Science and PNAS. However, such a validation is not possible at the

subfield level. Hence, for label propagation at the subfield level we slightlymodified the original

implementation. We observe that the algorithmmay propagate subfields both to papers within

and out of the original APS core, which is made of papers that already have a PACS code. For

such a reason, for each subfield α we selected the threshold τα so that after 10 iterations the

number of papers of each subfield cannot growmore than 10%within the original APS dataset.

For simplicity, we chose τ IN,α = τOUT,α . Afterwards, we performed label propagation for each

subfield α independently. We obtained a total of 1,137,670 papers inWoS published between

1985 and 2015 and classified within one of the subfields of Physics. We note that also some

papers outside the considered time-span were assigned a subfield, but we focused our analysis

on the period 1985−2015 to be consistent with the years when PACS were systematically used

in publications by the APS. As alreadymentioned, PACS corresponding to the two categories

associated to CondensedMatter weremerged into the same subfield.

We compare the classification of papers obtained through label propagation with that of

the original APS dataset bymeasuring the fraction of subfields in the original and the propa-

gated datasets (Figure S2a). The two datasets have a similar subfield distribution with a cosine

similarity of 0.99. Differences in the two datasets are likely to indicate an under- or over- repre-

sentation of some areas of physics in the Physical Review series compared to the overall physics

world. In Fig. S2b we report the distribution of the number of subfields per paper in the two

datasets. Papers in the reconstructed physics dataset tend to be slightly more specialised (70%

of the papers are assigned to a single subfield) than those in the APS dataset (61%). However,

overall the two distributions are quite similar. Finally, in Figs. S2c,d we show the evolution of

the fraction of papers of different subfields in the APS dataset and in our reconstructed dataset

from 1985 to 2015. It is evident how the two datasets have very similar temporal patterns during

the period under investigation.

Validation: To test the robustness of our findings, we validatedour data-driven classification

of papers across subfields. As alreadymentioned, PACS codeswere systematically introduced in

publications in the APS journals 1985. As our method classifies papers into subfields according

to patterns of references and citations only, our algorithm naturally assigns subfields also to

publications in the APS journals before 1985, provided that they are significantly connected

to the corresponding core papers for the subfield(s). Five of the previously six analysed APS

8/26



General
HEP
Nuclear
Astro
AMO
Classical
Plasma
CondMat
Interdisc

0.15 0.30 0.45
APS

0.00

0.15

0.30

0.45

Re
co
ns
tru

ct
ed

 
ph

ys
ics

 d
at
as
et

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n 
of
 

AP
S 
pa

pe
rs

1 2 3 4+
Number of subfields

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac
tio

n 
of
 p
ap

er
s

APS
WoS

198
5

199
0

199
5

200
0

200
5

201
0

201
5

Year

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n 
of
 p
ap

er
s 

in
 o
ur
 d
at
as
et

Figure S2. Comparison between the APS dataset and the reconstructed physics dataset. a

Scatterplot of the fraction of subfields appearing in papers of the APS dataset and in the

reconstructed physics dataset. bDistribution of number of subfields per paper in the two

datasets. c, d Temporal evolution of the fraction of subfields between 1985 and 2015 for the two

datasets. Colours for subfields are consistent with those used in themain text.

journals (with the exception of Physical Review E) were born before 1985. In Fig. S3 we test the

robustness of the subfield distributions in the journals as away to assess the effectiveness of our

data-drivenmethod to classify physics papers across subfields by comparing the distribution

of the subfieldmanually assigned between 1985 and 2015 in Physical Review. A, B, C, D, and

Physical Review Letters, with that obtained bymeans of label propagation for papers published

before 1985 in the same journals. The two distributions are highly correlated for all journals,

with cosine similarities ranging from 0.88 to 0.99 .

We also tested the robustness of our subfield categorisation by comparing it to additional

sources providing alternative physics classifications, namely the physics classification provided

by (i) the WoS dataset (for core physics papers only), (ii) the arXiv repository, that collects

electronic preprints of papers related to physics topics. The cosine similarity between the

fraction of papers in our dataset and in the two alternative datasets is quite high, respectively (i)

0.86 forWoS, (ii) 0.74 the arXiv. The scatterplots between our reconstructed physics dataset and

the other databases are shown respectively in Figs. S4a,b. Achieving a perfectmapping between
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Figure S3. Testing propagated subfields in APS journals before 1985. Scatterplot between

the subfield distribution of the papers published in the APS journals after 1985, and the

propagated subfield distribution for papers published before 1985 in the same journals. The

cosine similarities between the distribution of papers before and after 1985 are (i) 0.91 for

Physical Review A, (ii) 0.99 for Physical Review B, (iii) 0.99 for Physical Review C, (iv) 0.93 for

Physical Review D and (v) 0.88 for Physical Review Letters.

the scheme of arXiv andWoS into the PACS scheme is not possible. As an example, the nonlin

category in the arXiv dataset, that we eventually mapped into the General physics subfield,

actually contains papers of at least an additional subfield, i.e. Interdisc. For the same reason

some of the subfields obtained from the PACS scheme do not have a direct counterpart in the

other two datasets. However, small changes in themapping scheme do notmodify significantly

the output of our validation. For example, mergingClassical andPlasma in our dataset to better

match the “Fluids & Plasma Physics” category inWeb of Science changed the corresponding

cosine similarity by less than1%. We report the fullmappings inTable S2. Wemention that in the

past discrepancies between the arXiv categories assignedmanually to papers and data-driven

cluster of papers based on co-citations across subfields have been observed.6

Another factor that may affect the matching is the presence of specific biases for each of
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Figure S4. Comparison between the distribution of subfields in our reconstructed physics

dataset with theWoS and the arXiv physics categories. Correlation between distributions is

high, with values of cosine similarity respectively equal to a 0.86, and b 0.74. Colours for

subfields are consistent with those used in themain text.

these datasets, which are captured by comparing it with our new data-driven reconstructed

physics dataset. For instance, the arXiv, first created as a repository for people working on High

Energy Physics, shows a disproportionally high number ofHEP and Astro publications. This

comes as no surprise since the initial scope of the arXiv was to diffuse scientific results inHEP,

and the repository has been largely used by such community. In Table S3, we report the five

non-APS journals withmost papers assigned to each subfield bymeans of label propagation

(number of papers in brackets).

We note that the Astrophysics literature seems to be relatively disconnected to its APS core,

compared to results for the other subfields. As an example, we focus on a well established

specialised journal in the area, the Astrophysical Journal, for whichWoS indexes 98,482 papers,

only 2,330 of which are labeled. This is because, out of the 3,724,542 outgoing references from

papers published in the Astrophysical Journal, only 0.6% are directed towards the Astro core.

Similarly, out of the 4,896,146 incoming citations towards papers published in the Astrophysical

Journal, only 1.4% come from the Astro core. As a reference, we compare these numbers with

those of Solid State Communications, a specialised journal in the area of CondensedMatter,

for which our method assign a subfield to 16,274 out of 35,781 papers. In such case, of the

489,625 references and 635,466 citations of the journal, 5.3% and 4.8% link to the CondMat

core. These numbers are roughly fives times higher than those for the Astrophysical Journal.

As a consequence of this disconnection, it is possible that our method it is underestimating

the number of (possibly specialised) scientists working in Astrophysics. For both journals the
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WoS category Subfield arXiv category

/ General /

Fields HEP hep-ex, hep-lat, hep-ph, hep-th, math-ph

Nuclear Physics Nuclear nucl-ex, nucl-th

Astrophysics Astro astro-ph, gr-qc

Atomic, Molecular & Chemical Physics AMO quant-ph

/ Classical physics, nlin

Fluids & Plasmas Physics Plasma /

CondensedMatter Physics CondMat cond-mat

Multidisciplinary Physics Interdisc /

Table S2. Mapping of physics categories from arXiv categories andWoS physics categories

into physics subfields.

fraction of citations (references) coming from (going towards) the cores associated to the other

subfields is negligible.

At last, in Fig. S5 we report the publication profile across subfields for three leading interdis-

ciplinary journals. Unsurprisingly, most subfields are represented in all three venues. We note

that the proportions of the different subfields is similar to that of the publication of the APS

flagship journal, Physical Review Letters.

Ge
ne
ra
l

HE
P

Nu
cle

ar
As
tro

AM
O

Cl
as
sic

al
Pl
as
m
a

Co
nd

M
at

In
te
rd
isc

0%

20%

40%

60%

Pe
rc
en
ta
ge
 

of
 p
ap
er
s

Nature

Ge
ne
ra
l

HE
P

Nu
cle

ar
As
tro

AM
O

Cl
as
sic

al
Pl
as
m
a

Co
nd

M
at

In
te
rd
isc

Science

Ge
ne
ra
l

HE
P

Nu
cle

ar
As
tro

AM
O

Cl
as
sic

al
Pl
as
m
a

Co
nd

M
at

In
te
rd
isc

PNAS

Figure S5. Shares of subfields for publications inNature, Science and PNAS. All three

interdisciplinary journals publish across all subfields of physics.
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Rank General HEP Nuclear

1 Phys. Lett. A (9,027) Nucl. Phys. B (14,524) Nucl. Phys. A (16,680)

2 J. Phys. A-Math. Gen. (6,029) J. High Energy Phys. (10,860) Phys. Lett. B (9,017)

3 Physica A (4,863) Nucl. Phys. A (7,109) J. Phys. G-Nucl. Part. Phys. (4,916)

4 Class. QuantumGravity (4,299) Prog. Theor. Phys. (5,280) Nucl. Instrum. Methods Phys. A (4,238)

5 J. Math. Phys. (3,366) Eur. Phys. J. C (4,462) Eur. Phys. J. A (2,848)

Rank Astro AMO Classical

1 Phys. Lett. B (3,559) J. Phys. B (7,005) Opt. Commun. (4,179)

2 J. Cosmol. Astropart. Phys. (2,370) J. Chem. Phys. (2,314) Phys. Lett. A (3,955)

3 Astrophys. J. (2,330) Nucl. Instrum. Methods Phys. B (1,483) Opt. Lett. (2,492)

4 Class. QuantumGravity (2,099) Phys. Lett. A (1,460) J. Opt. Soc. Am. B (2,319)

5 Nucl. Phys. B (1,219) Phys. Scr (1,089) J. Appl. Phys. (2,123)

Rank Plasma CondMat Interdisc

1 Phys. Plasmas (2,749) J. Appl. Phys. (23,364) Physica A (1,977)

2 Phys. Fluids (1,088) Appl. Phys. Lett. (20,196) J. Phys. A-Math. Gen. (1,923)

3 Rev. Sci. Instrum (908) Physica C (19686) J. Chem. Phys. (1,636)

4 Nucl. Instrum. Methods Phys. A (873) Solid State Commun. (16,274) Phys. Lett. A (1,419)

5 Plasma Phys. Control. Fusion (823) Physica B (15,247) J. Appl. Phys. (1,297)

Table S3. Non-APS journals withmost publications with propagated subfields.

13/26



S4 Assigning physicists to subfield(s)

While papers are directly associated to subfields through label propagation, we still need to

assign physicists to their correct research area. Some physicists, in particular those extremely

productive, are likely to appear over a whole career as the authors of papers belonging to

multiple subfields, though some of these might not be significant. As a consequence, when

assigning the authors to the different subfields, we applied a statistical filter in order to assign

only the subfield(s) on which their engagement is significant. In particular, we consider a

physicist as significantly working in a subfield only if her share of publications in it, compared

toher production across all subfields, is greater than that of the average scientist. Let us consider

the bipartite weighted networkW = {wiα}, wherewiα is an integer corresponding to the number

of publications of author i in subfield α . The previous condition can hence by formalised as

RCA =

wiα
∑α ′ wiα ′

∑i′ wi′α
∑i′α ′ wi′α ′

.
> 1. (8)

This filter, known as the Revealed Comparative Advantage (RCA) index, was introduced in 1965

in Ref.7 and has been used previously to filter bipartite networks, as in Ref.8 Differently from

other alternatives, it guarantees that each author is active on at least one field. We limit our

analysis to authors with at least N = 5 publications in our reconstructed physics dataset, in

order to drop all the authors whose contribution to physics is marginal. This set covers 135,877

authors.

The average distributionwiα of subfields per author is shown in Fig. S6a. In Fig. S6b we show

the average fraction of papers in each subfield for authors statistically validated in a given area.

This plot is similar to that of Fig. ??c of themain text, but reportsmore fine-grained information

about the involvement of physicists in the subfields to which they are assigned. As shown, the

share of publication in the subfield of belonging is the highest for authors inCond Mat,HEP and

Nuclear. Last, in Fig. S6c we report the average career lengthmeasured in years, of physicists

starting publishing in a given year. As expected, the earlier the starting year, the longer the

average time span between the first and last publications of a physicist.

Validation: To test the robustness of our subfield categorisation at the author level, we

compared the numbers of authors working in each subfield with the number of APSmembers

registered across APS Divisions.9 In Fig. S7 we report the scatterplot between the two datasets,
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Figure S6. Basic features of authors in our reconstructed physics dataset. a Average

publication shares across subfields of a physicist. b For authors validated in a subfield, average

fraction of publications in that subfield. c Average career lengthmeasured in years as a

function of the starting year of a career.

with a cosine similarity of 0.98. The full mappings between the APS Divisions and our subfield

scheme is reported in Table S4.

0.0 0.1 0.2 0.3
APS Divisions

0.1

0.2

0.3

Re
co

ns
tru

ct
ed

 
ph

ys
ics

 d
at

as
et

General
HEP
Nuclear
Astro
AMO
Classical
Plasma
CondMat
Interdisc

Figure S7. Comparison of the fraction of physicists associated to the different subfields

and themembers of the APS Divisions. Correlation between the two distributions is high,

with a cosine similarity of 0.98. Colours for subfields are consistent with those used in themain

text.

S5 Author disambiguation

A common problem in the analysis of scientific careers is that of author disambiguation.10 Our

census of physics is based onmerging paper information on subfield and author information

on publications provided by theWoS. Our analysis has been undertaken on the latest available

version of WoS which, differently from the previous one, has a built-in author disambiguation,

where authors are not classified by a name but by a specific author ID. A single author ID is
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Subfield APS Divisions

General Computational Physics, Quantum Information, Gravitation

HEP Particles & Fields

Nuclear Nuclear Physics, Physics of Beams

Astro Astrophysics

AMO Atomic, Molecular & Optical

Classical Fluid Dynamics

Plasma Plasma Physics

CondMat CondensedMatter Physics, Laser Science, Polymer Physics

Interdisc Biological Physics, Materials Physics, Chemical Physics

Table S4. Mapping of physics categories from the APS Divisions into the physics subfield

scheme.

associated to a unique author, and can be associated to several author names when the publi-

cations authored by the same individual report slightly different name formats. Similarly, two

homonyms, but distinct individuals with the same author name are associated to different au-

thor IDs. Nevertheless, we are aware that a perfect disambiguation is a goal which is impossible

to achieve. For such a reason, we decided to test the robustness of our results by replicating

the analysis reported in the main text after excluding a subset of authors with names which are

known to be particularly hard to disambiguate. In particular, we focused on themost common

100 Chinese and 200 Korean names,11,12 which correspond to 504,538 distinct author IDs in

theWoS dataset, 15,982 of which are present also in our subset of physicists. Overall, results

were shown to be extremely robust to the elimination of such authors. As an example, we report

in Fig. S8 the starting point of our analysis, i.e. the authors distribution across subfields. The

cosine similarity between the distribution across subfields of the full set and the reduced set of

physicists, without authors difficult to disambiguate, is 0.99.

It is worth tomention that highly curated data-repositories with very good author disam-

biguation is available for some subfields. For instance, the well-knownHEP-INSPIRE dataset

has an extremely valid author disambiguation, especially needed for fields where most publica-
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Figure S8. Testing author disambiguation. Number of authors working in each subfield:

plain color (reduced set of 15,982 authors difficult to disambiguate), faded color (all other

physicists). The cosine similarity between the distribution across subfields of the full set of

physicists, and the set without authors hard to disambiguate, is 0.99. Colours for subfields are

consistent with those used in themain text.

tions are done by large collaborations. However, it is difficult to map the HEP-INSPIRE author

disambiguation into the built-inWoS author disambiguation. On top of this, we believe that

suchmerge would not add validity to our analysis, as conversely would introduce a bias into

the dataset, where authors publishing in different subfields are classified according to different

disambiguation procedures.
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S6 Null-models for co-activities and transitions between subfields

In Fig. ??dwemap the relation betweenphysics subfields into a network, where nodes represent

subfields, and weighted links describe significant co-activity between them. Let us consider a

set of N physicists, and two subfields α and β with respectively Nα and Nβ physicists. We define

the co-activityCαβ between the two subfields as the ratio between the number of physicists

Nαβ working on both subfields α and β , and the expected number N̂αβ = (NαNβ )/N. Starting

from the link with the highest weight, we plot theminimumnumber of links needed to have

a connected network. All reported links haveC > 1, meaning that only edges with co-activity

higher than what expected at random (given the size of the subfields) are shown.

In Fig. ??b we show flows of physicists from the subfield(s) of their first publication, to the

subfield(s) where their activity is significant (RCA>1). Let us consider the number of physicists

Fα|β working in subfieldα who started their career by publishing in subfield β , so that∑β Fα|β =

Nα . Subfield β is significantly contributing to subfield α only if Fα|β/Nα is greater than the total

fraction of physicists whose first publication is in subfield β (reported in the rectangles on the

top). Only significant flows are shown.

S7 Subfields boundaries and overlaps

In the PACS classification more subfields can be assigned to a single paper. To what extent

the measured authors’ coactivity (Fig. ??d) is simply due to these multiple assignments? To

answer this question, we selected the papers published by authors that are active on (at least)

two subfields, and measured how many papers reported at the same time PACS from both

activity subfields. We found that only 19.4% of all papers have PACS frommultiple subfields,

with the remaining∼81% being labelled with only one subfield. Fig. S9 shows the fraction of

double-subfield papers for all pairs of subfields, indicating that on average themeasured author

coactivity is not due tomultiple assignments at the level of single papers, but to authorsworking

on truly different topics of research. Yet, despite the overall accuracy of ourmethod, admittedly,

there are examples of topics in which the classification we used is inadequate to fully allocate

them in a single subfield. This is the case, for example, of network science, where 94% of the

papers are consistently tagged withmore than one subfield (mainlyGeneral, CondMat and/or

Interdisc).
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matrix represents the fraction of papers that are assigned to both subfields i and j.

S8 Theorists and experimentalists in HEP

In Fig. ??a-ewe show the different patterns of productivity and impactwithin different subfields.

However, in the case ofHEP it is worth separating the communities of experimentalists and

theorists, to the different expected patterns of activity across the two groups. To do so we

classified as “theoretical” the authors predominantly publishing inHEPwith less than 10 co-

authors. In contrast, the remaining ones were classified as “experimental”, as a large average

number of co-authors is likely to be due to involvement in large-scale collaborations, such

as ATLAS or CMS at LHC. We validated our classification by looking at the occurrence of the
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strings “experiment*” and “theor*” in the titles of the two groups of papers. We found that the

string “theor*” is∼20 timesmore likely to be assigned to the theoretical group rather than to the

experimental one (when compared to a null model that takes into account the different sizes of

the two groups). On the other side, the string “experiment*” is∼4 timesmore likely to appear in

the experimental group than in the theoretical one. Fig. S10 shows the equivalent of Fig. ??a-e for

these two categorieswithinHEP. Although experimentalistswrite significantlymore papers and

get more citations than theorists, the picture is clearly reversed when one considers fractional

productivity and impact. Besides, it is clear that the overall peculiar behaviour in productivity

and impact ofHEP physicists is mainly due to the experimental part of the community. HEP

theorists’ productivity and impact are mostly comparable to physicists active in the other

physics subfields.

S9 LHC and the HEP 2010 peak

In Fig. ??a we show over the years the relative number of new authors entering each subfield.

We notice thatHEP is characterised by a large peak in 2010. For this reason we looked at all the

first publications of newHEP authors in 2010, and searched for the collaborations responsible

for each paper. We found that 76% of the new HEP authors in 2010 have a first publication

which is connected to the opening of LHC, either directly through the ATLAS, CMS and LHC

collaborations.,13 or indirectly (Ref.14 of the ALICE collaboration takes advantage of results

by LHC). These new authors also amount to the 21% of the total number of new physicists

across subfields, explaining the observed peak forHEP. In Fig. S11 we show the yearly fraction

of physicists who published their first paper in a new subfield, after removing all new 2010HEP

authors connected to the activities of LHC. As displayed, the peak at 2010 forHEP disappears.

S10 Chaperone effect

In Fig. ??we computed the number of chaperoned authors across subfields. The Chaperone

effect was originally investigated in Ref.15 for scientific venues, measured in terms of scientists

making the transition fromnon-last to last (senior / PI) authors in papers published in a journal.

Here, as we are interested in the relations, as well as migration between physics subfields,

we focused on a simplified version of such chaperonemeasure c , computing the fraction of
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Figure S10. Productivity and impact for theorists and experimentalists inHEP. a, Average

team size, defined as average number of authors per paper, over time. b, Average productivity,

defined as average number of papers per author, over time. Productivity grows dramatically for

experimentalists but stays roughly constant for the other group. c, Fractional productivity,

i.e. number of papers divided by team size, over time. Here the picture is reversed: fractional

productivity is significantly higher for theorists, although slightly declining over time. d,

Average impact, defined as number of citations per author within a 5 years window. Impact

increases in both groups, but for the experimentalists the growth is exceptional. e, Fractional

impact, i.e. number of paper citations divided by team size, over time. Again, theorists get

significantly more citations per author than experimentalists, with the difference also growing

over time.

physicists first publishing in a subfield who have as co-authors at least one scientist who has

already published in the area.

Despite being intuitive and close to the variable used in Ref.,15 thismeasuremight not prove

adequate in the case of subfields characterised by publication through large-scale collabora-

tions. For such a reason, we tested our results against c̃, a variant of the chaperone index. Given

the first publication of a scientists in a subfield, c̃measures the average fraction of co-authors

who have already published in the area. As shown in Fig. S12, in the case of our data c and c̃ are

very highly correlated, with a cosine similarity of 0.99.
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Colours for subfields are consistent with those used in themain text.

S11 Authors impact and citation rates across subfields

Top authors across subfields have very different impact, as shown in Fig. ??g. This is mainly a

consequence of different productivities, rather than diverse citation patterns across subfields.

Indeed, the typical number of papers produced by top authors is very heterogenous across

physics communities (Fig. ??f ). In contrast, we found that the number of citations per paper is

rather constant across subfields: the average is 27.3, with all subfields fallingwithin 1.8 standard

deviation fromthis value. For example, paperspublished inHEPand Interdisc receiveonaverage

respectively 27.4 and 33.9 citations, despite the much larger impact of HEP authors. Similar

results are obtained for themedians of paper citations across subfields. The averagemedian

across physics communities is 9.0, the standard deviation of the median across subfields is 1.1,

and all subfields are at most 1.7 standard deviation away from the global median. Themedian

of paper citations forHEP and Interdisc are respectively 9 and 11.

S12 The physics Nobel prizes

In Fig. ??j we show the distribution of Nobel prizes awarded in physics across subfields. Data on

Nobel prizes in physics are available on the Nobel prize website.16 We report all awards since
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1985 in order to be consistent with the rest of our data-driven analysis of careers in physics. All

such awards are accompanied by amotivation which allows to assign the crucial discovery or

streamof research that led to theNobel prize to one ormore physics subfields. In the considered

time span (1985-2017), 82 scientists were awarded the Nobel prize in physics.
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