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Abstract
Cycling is an outdoor activity with massive health benefits, and an effective solution
for sustainable urban transport. Despite these benefits and the recent rising
popularity of cycling, most countries still have a negligible uptake. This uptake is
especially low for women: there is a largely unexplained, persistent gender gap in
cycling. To understand the determinants of this gender gap in cycling at scale, here
we use massive, automatically-collected data from the tracking application Strava on
outdoor cycling for 61 cities across the United States, the United Kingdom, Italy and
the Benelux area. While Strava data is particularly well-suited to describe the behavior
of regular cyclists and its generalizability to occasional cyclists requires further
investigation, the size of these data and their characteristics represent an
unprecedented opportunity for the literature on cycling. Leveraging the associated
gender and usage information, we first quantify the emerging gender gap in
recreational cycling at city-level. A comparison of cycling rates of women across cities
within similar geographical areas—where the penetration of Strava is assumed to be
comparable—unveils a broad range of gender gaps. On a macroscopic level, we link
this heterogeneity to a variety of urban indicators and provide evidence for traditional
hypotheses on the determinants of the gender-cycling-gap. We find a positive
association between female cycling rate and urban road safety. On a microscopic
level, we identify female preferences for street-specific features in the city of New
York. Assuming that the determinants of the gender-cycling-gap are similar across
regular and occasional cyclists, our study suggests that enhancing the quality of the
dedicated cycling infrastructure may be a way to make urban environments more
accessible for women, thereby making urban transport more sustainable for
everyone.
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1 Introduction
Cycling is an outdoor activity associated with many individual and societal benefits. From
the individual perspective, cycling has a positive impact on both physical and mental
health, with a strong link to improved cardio-respiratory fitness, decreased cardiovascu-
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lar mortality risk, and reduced stress-levels [1–3]. From a societal viewpoint, cycling is
an environmentally-friendly and highly economic commuting option, especially for typ-
ical urban trips [4]. Recently, the United Nation (UN) Sustainable Development Goals
(SDG) identified it as a pivotal component of a sustainable urban-mobility system [5]. In-
terventions targeted at increasing the number of cyclists are recommended as one of the
solutions against traffic congestion, increased emissions, poor air quality and road safety.

Despite these wide-ranging benefits, cycling is mostly a male-dominated activity with
a large gap in participation rates between men and women. Cycling research and policy
making that is mostly focused on improving mobility for the existing, dominant group,
risks to ignore half of the population and sustainable mobility solutions for everybody
[6, 7]. Data on the use of bike-sharing services in three large US cities (New York, Boston
and Chicago) show that only one in four bicycle trips in the 4-year period between 2014
and 2018 was made by a woman; other modes of transport, however, do not display com-
parable trip-share gaps [8]. Similarly, in San Francisco, only 29% of cyclists are women
[9]. Recent data for England show that on average, not only do men take more bicycle
trips per week than women, but they also cover longer distances [10]. A few European
countries however, such as Denmark, Germany and the Netherlands represent the main
exception to this pattern, with women making up for more than 45% of all cyclists in these
areas already in 2005 [11]. The evidence from this group of countries demonstrates that
the reason for any kind of gender gap is not intrinsic but comes from place-specific barri-
ers that need to be identified and, whenever possible, removed, if cycling should become
a universal mode of transport.

The academic literature aimed at understanding the determinants of the gender gap
in cycling links it on one hand to behavioral and psychological hypotheses. Women per-
ceive cycling as a riskier activity compared to men, which would directly translate into a
stronger preference for cycling infrastructure that is physically separated from motorized
traffic [12–15]. On the other hand, physical route characteristics can play a role, for ex-
ample in San Francisco, where women disfavor steep slopes, particularly for commuting
[16]. In low-cycling contexts, women also report other deterring factors, such as an aver-
sion for long distances and poor weather conditions, and a generally lower confidence in
their cycling skills [17, 18]. Differences in preferences are typically stronger among oc-
casional or non-cyclists than among regular cyclists [12], thus suggesting that policies
targeting women are particularly needed to increase cycling uptake. The main limitation
of these studies is that they are mostly conducted via surveys or experiments with typi-
cally low sample sizes and/or a limited geographical breadth, and therefore low statistical
explanatory power—especially for the large number of possible confounders.

Recently, the emergence of new technologies for cycle-tracking and online-based ser-
vices (e.g. bike-sharing) generated an unprecedented stream of automatically collected
data on cycling behavior, which enlarge the potential for research in this area. In this con-
text, data from bike-sharing services have been used to study whether interventions to the
bike-sharing facilities impacted men and women differently in the city of New York [19]
and, more generally, to study factors affecting the demand for these types of services [20].
Data from Strava Metro, a service provided by the sport-tracking application Strava, have
been used to study exposure to air pollution for different groups of cyclists in the city of
Glasgow [21] and cycling patterns and trends for the city of Johannesburg [22]. A few pio-
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neering works have used GPS-based data to study route choices for different demographic
groups in the city of San Francisco and Atlanta [14, 16].

In this study, we contribute to this strand of literature and use data from Strava to in-
vestigate the determinants of the gender gap in recreational cycling at a larger scale. With
about 36 million users (2018 data) over 195 countries, Strava represents an unique data
source on cycling-related behaviour [23], both in terms of the number of cyclists involved
and the extent of the geographical coverage with a methodologically homogeneous data
collection. For this study, we collect and use data for over 60 cities in four geographical
areas across the United States and Europe, to explore the gender-cycling-gap at two differ-
ent levels. First, we exploit the heterogeneity in the gender gap across the various cities in
our dataset to challenge traditional hypotheses from the literature on the determinants of
the gender gap in cycling. In particular, we study the strength of association between the
gender gap in cycling measured at the level of urban centers and a set of urban indicators,
spanning from morphological characteristics of the cities to safety indicators capturing
the prevalence of cycleways and streets with low-speed limit in the road network. In the
second part of the study, we move the analysis from a macro to a micro level. Here, focus-
ing on the city of New York, we model the gender-cycling-gap measured at street-level in
terms of specific urban features. By using logistic regression analysis, we investigate the
association between the presence of dedicated cycling infrastructure and the volume of
female cyclists on the street relative to men. The results indicate that streets with cycling
infrastructures, particularly those ensuring the presence of physical separation for mo-
torized traffic, are associated to a more balanced gender ratio, suggesting a way for policy
makers to intervene to make urban environments more accessible for women.

2 Results
2.1 Using Strava data to measure the gender gap in recreational cycling
We use Strava data to measure the gender gap in recreational cycling in 61 urban cen-
ters across four geographical areas: United States, United Kingdom, Italy and Benelux.
Strava is an Internet service for tracking human exercise that relies on GPS data. The ser-
vice supports up to 33 different activities, but it is mostly used for cycling and running.
At the time of the data collection in 2018, Strava counted around 36 million users world-
wide, corresponding to 0.6 billion recorded activities [23]. Of these, 284 millions were
cycling-activities (47%), and approximately one in five of cycling-uploads were by women
(50 million) [23]. Tracking of commuting is growing in popularity on Strava [23], however
the majority of uploads refers to recreational and athletic cycling. The raw data consist
of a collection of Strava segments, with information on users training on these from the
associated leaderboards. The data were processed to map gender and usage information
from Strava segments to a network-based definition of streets and then aggregated for the
entire city, following the pipeline described in the Methods.

For each city c, we define the gender-cycling-gap as the ratio σc between the total kilome-
ters travelled by female cyclists and the overall kilometers travelled by cyclists of both gen-
ders. This measure accounts both for gaps in trip-shares among men and women and for
differences in travelled distances. By construction, σc varies between 0 (no female cyclists)
and 1 (no male cyclists): a value below 0.5 indicates the presence of a positive gender-
cycling-gap (i.e. men cycling more than women). The closer the value to 0 the stronger
the gap. For each geographical area covered by the study, Fig. 1 provides an overview of
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Figure 1 Gender gap in recreational cycling in Strava: overview of cities included in the study. For each of the
four geographical areas covered by the study, the figure depicts: the location of cities included in the analysis,
the value of the female cycling rate σc for the five cities displaying the highest σc and the distribution of σc in
the geographical area

the cities included in the study, showing the five urban centers associated with the highest
σc for each area, as well as the location and the distribution of σc of all covered cities (the
full ranking is provided in the Supplementary Information (SI) in Additional file 1). In our
sample, the largest value for σc is 0.21 in the municipality of Groningen, Netherlands, in-
dicating the presence of a substantial gender gap in recreational cycling for all cities under
consideration.

Even within homogeneous geographical areas, we observe a substantial heterogeneity
in σc across cities. In the area of Benelux, in particular, σc ranges between 0.06 (Charleroi,
Belgium) and 0.21 (Groningen, Netherlands). Dutch cities (particularly those in the north-
ern regions) generally outperform cities in Belgium and Luxembourg. Among Italian
cities, we observe a characteristic geographical pattern, with urban centers in the north-
east displaying a lower gender gap than cities in the south and north-west. This north-
south dichotomy is likely to be linked to the morphological characteristics of the country
and the presence of a large flat land with a well-established cycling tradition. Differences
in economic development might partially explain this structure as well. No geographical
patterns are instead observable for cities in the United States and in the United Kingdom
included in our sample. Interestingly, the is no evident link between the gender ratio and
the size of a city. For instance, large cities such as Boston, Amsterdam and London perform
high in the corresponding ranking, while top-ranking positions in Italy are dominated by
relatively smaller urban areas. It is noteworthy that the gender-gap measured using data
from Strava may differ from official metrics on urban cycling provided from local and na-
tional administrations. This is the case for instance for cities in the Netherlands, where
according to data by national authorities, men and women have a similar cycling uptake
[24]. This discrepancy is likely due to the fact that Strava is mostly used for recreational
purposes and as such may penetrate differently among the two groups of users (men and
women). Furthermore, the degree of penetration may not be homogeneous across dif-
ferent geographical areas. For instance, data on the use of Strava indicates different usage
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patterns and adoption rates in the United States compared to other countries [25]. Our as-
sumption throughout the study, is that the degree of penetration of the fitness app Strava
for men and women is similar for cities within the same geographical area [homogeneity
assumption]. While we do not expect the cycling behaviour tracked in Strava to be repre-
sentative of the cycling behaviour of the overall population, the homogeneity assumption
guarantees that the observed variation in σc for cities within the same geographical area
is not linked to gender patterns in the app usage.

2.2 Cross-city analysis of the gender gap
The survey-based literature on the gender gap in cycling suggests that women are more-
risk averse, which would result in a lower cycling rate than men in environments perceived
as risky [12]. Following this hypothesis, we investigate the association between the gen-
der ratio σc and two indicators of urban road safety, constructed using OpenStreetMap
(OSM) data [27]. The first indicator (hereafter bike lanes) measures the proportion of
streets with cycleways (either protected or unprotected) in the street network. The sec-
ond metric (hereafter speed limit) provides the proportion of streets with a speed-limit
equal or lower than 20 mi/h or 30 km/h. Both metrics are weighted using the length of
each street. Figure 2 reports the scatter plots between the gap σc and the two urban road
safety metrics, for the four main geographical areas separately. Each marker corresponds
to a city, the black line is the linear fit. Both measures of road safety display a positive cor-
relation with the observed gender ratio for the area of Benelux. For cities in the United
Kingdom, a positive (but weaker) correlation is only observable for the speed limit indi-
cator. For cities in Italy and in the United States, in contrast, both correlations are not
statistically different from 0 (at neither a significance level of 0.05 nor 0.1). This lack of
significant correlations may be due to the lower degree of development of dedicated cy-
cling infrastructure in these areas, as opposed to cities in Benelux. This is the case, for

Figure 2 Correlations between gender ratio and urban road safety indicators. The scatter plots show the
correlations between two urban road safety indicators and the gender ratio σc , for cities in the four
geographical areas separately. For each area, outliers to the three distributions of σc , bike lanes and speed limit
were identified using the IQR Score method [26] and excluded. Each data point represents a city. The black
line is the linear fit. The two urban road safety indicators capture the density of streets with a cycle lane in the
street network (indicator: bike lanes) and the density of streets with a speed limit up to 20 mi/h or 30 km/h in
the street network (indicator: speed limit). A formal definition of the two indicators is provided in the Methods
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instance, if a certain proportion of streets must be equipped with a cycleway in order for
the city to be perceived as a safe cycling environment by women. In cities with a low de-
gree of cycling-dedicated infrastructural development, the observed level of σc might be
dependent on other concurrent factors linked—for instance—to the urban structure or
the economic development of the area. Although limited to specific geographical areas,
the positive correlations suggest an association between the degree of road safety and σc,
thus supporting the hypothesis that low levels of women engagement with cycling may be
explained by a greater concern for safety compared to men.

To untangle the effect of confounding factors, we explore the relationship between σc

and the two indicators of urban road safety controlling for a range of city-level indica-
tors. To provide a thorough characterization of each city, the indicators are chosen from
four domains: 1) E: Environment, such as share of population in green areas, 2) BEI:
Built-Environment & Industrialization, such as concentration of PM 2.5, 3) SED: Socio-
Economics & Demographics, such as GDP per person, and 4) M: Street Morphology, such
as average street grade. A full list of indicators is provided in Table 1. The correlation ma-
trix of the indicators across the entire sample is provided in Fig. S3 in the SI. We include
geographical dummies for the macro areas to account for different penetration levels of
Strava worldwide.

Coefficients (and 95% confidence intervals) of a linear regression model estimated via
Ordinary Least Squares (OLS) are shown in Fig. 3, with statistically significant coefficients
at 0.05 level (two-tailed test) pictured in purple. The pipeline for the selection of the model
is provided in the Methods and the selected model presents an adjusted-R2 of 0.80. Over-
all, the regression analysis confirms the positive association between the gender ratio of
cyclists and the speed limit indicator. This association means that urban centers with a
relatively wider low-speed zone typically present a more balance cycling uptake between
men and women, after controlling for other confounding factors. Under the assumption
that a wider low-speed zone indicates a less risky environment, this result also confirms
that women are more susceptible than men to the perceived level of risk of the cycling
environment. Other insights emerge from the analysis of the control variables. First, we
observe a negative association between σc and the proportion of 3-way crosses. From a
topological view-point, cities with a high proportion of 3-way intersections deviate from
grid-like street networks, that, by contrast, present a large prevalence of (mostly orthogo-
nal) 4-way intersections [28]. This result can be interpreted again under the lens of the de-
gree of safety of the urban environment for cycling. Indeed, the literature has shown that
not only are crashes involving cyclists more likely to happen at non-orthogonal crosses
than at right intersections, but the former are more likely to lead to severe injuries [29].
Another key urban feature relates to the morphology of the street network. The negative
association between σc and the grade indicator shows that hillier cities display a larger
gender gap in recreational cycling, controlling for all other factors. This result aligns with
previous findings that women would have a preference for flatter routes [16] which may
indicate a structural limit in the potential for cycling uptake by women in particular urban
environments. Interestingly, the analysis also indicates a lower gender ratio in cities with
worse air quality (higher concentration of PM 2.5). In absence of a (quasi-)experimental
setting, however, we are unable to determine whether the air quality is a relevant feature
per se or if it acts as a proxy for other city-level characteristics such as motorized traf-
fic. Finally, the results indicate a more balanced cycling uptake between men and women
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Table 1 City-level indicators: description and source

Category Variable name Description Data
source

σc Proportion of kilometers rode by female cyclists to the
overall kilometers rode by any cyclist within the urban
area

Strava∗

E share green Share of population living in the high green area in
2015 in the Urban Centre of 2015. Ranging between
0–1

[40]

open space Percentage of open-spaces within the spatial domain
of the Urban Centre. Ranging between 0–100

[40]

BEI built area Amount of the built-up area per person in 2015
calculated within the spatial domain of the Urban
Centre. Expressed in square meters per person

[40]

light emissions Average night time night-light emission calculated
within the Urban Centre spatial domain. Expressed in
nano-watt per steradian per square centimetre

[40]

pm2.5 Total concentration of PM2.5 for reference epoch 2014,
calculated over the Urban Centre. Expressed in μg/m3

[40]

SED area Area of the spatial domain of the Urban Centre.
Expressed in square meters

[40]

population Population density within the spatial domain of the
Urban Centre

[40]∗

GDP GDP per capita for year 2015 within the Urban Centre.
Expressed in US dollars

[40]∗

M degree Average node degree of street network within the
spatial domain of the Urban Centre

[28]

grade Average absolute inclination of streets within the
spatial domain of the Urban Centre. Expressed in
percentage

[28]

orientation Orientation order of street network bearings within the
spatial domain of the Urban Centre

[28]

3-way crosses Proportion of nodes that represent a 3-ways street
intersection in the street network within the spatial
domain of the Urban Area. Ranging between 0–1

[28]

straightness Ratio of straightline distances to street lengths for
streets in the street network within the spatial domain
of the Urban Area

[28]

RS bike lanes Proportion of streets with cycleways (either protected
or unprotected) computed on streets within the
spatial domain of Urban Centre

OSM∗

speed limit Proportion of streets with a speed-limit equal or lower
than 20 mi/h or 30 km/h computed on streets within
the spatial domain of Urban Centre

OSM∗

Categories: E: Environment, BEI: Built-Environment and Industrialization, SED: Socio-Economics and Demographics, M: Street
Network Morphology, RS: Road Safety.
∗ Indicates that the data from the original data sources required specific preprocessing described in the Methods.

in relatively wealthier cities (with a larger GDP per person) and cities with a lower de-
gree of night-light emissions (which can be a proxy for the size of the city). To test the
robustness of this analysis, we estimate three additional models where we adopt differ-
ent strategies to account for the different levels of penetration of Strava worldwide. These
strategies are described in the SI and differ in terms of: geographical coverage, specifica-
tion of the geographical dummies and standardization of the input and target variables
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Figure 3 Regression analysis. The main plot shows the estimated coefficients (square markers) with 95%
confidence intervals (black lines) for the final set of regressors included in the model. Model estimated via
Ordinary Least Square, selection performed via exhaustive search. Selection criterion: Akaike Information
Criterion (AIC). Statistically significant coefficient at 0.05 significance level are pictured in purple. The scatter
plot displays the observed σc vs the fitted σc

(Fig. S4 in SI). The results are largely consistent with the preferred specification provided
here.

2.3 Street-level analysis of the gender gap
2.3.1 New York City as a case study
The results in the previous section show that aggregated urban features model well the het-
erogeneity of the gender gap in cycling observed across different cities. They also confirm
and provide quantitative support to traditional hypotheses from the literature, which are
typically grounded on small-sample survey-based analyses. Though informative and af-
firmative, the previous analysis leaves open the question: Where exactly do women prefer
to cycle? Also, which concrete interventions could policy makers implement to enhance
cycling for women?

To answer these questions, we shift the focus from a macro-level comparison across
cities, to a micro-level setting where the unit of analysis are streets within one city as op-
posed to the entire city itself. This shift in perspective allows us to examine the preferences
of women for street-level characteristics in greater detail, thus identifying potential tar-
gets for interventions by policy makers. Among the available cities, we select as a case
study the city of New York, whose large collection of administrative datasets represents
an opportunity to enrich the analysis with data not otherwise available from OSM only.
In particular, using OSM data, we are able to characterize each street in our sample with
information on: the presence (or absence) of a protected (or unprotected) cycleway, the
presence of public lighting, the type of surface (paved vs unpaved), whether the street is
close to a park or to a coastline. The administrative data are instead used to measure the
number of crashes (any type of vehicles or bicycle-related only) on the street (normalized
by the street length) and to associate each street to a neighborhood. Finally, to proxy for
traffic flow, we compute the normalized edge betweenness [30] of each street in the street
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Table 2 Street-level indicators for the city of New York: description and source

Variable name Description Data source

Unprotected cycleway Dummy for presence of a shared or unprotected
bike-lane

OSM

Protected cycleway Dummy for either the presence of a protected
bike-lane or streets with no vehicles

OSM

Public lighting1 Dummy for the presence of public lighting OSM

Unpaved surface Dummy for unpaved surface OSM

Park proximity Dummy for streets next to a park (within 15 meters) OSM∗

Any-vehicle crashes Number of crashes involving any type of vehicles per
10 m of street length

NYC∗

Bike crashes Number of bicycle crashes per 10 m of street length NYC∗

{borough_name} Dummy for boroughs (baseline: Manhattan) NYC

Coast proximity Dummy for street next to the river coast OSM∗

Edge betweenness Edge betweenness of the streets computed for streets
within the largest component of the street network

1Information on the presence of public lighting is very sparse in OSM. In case of missing information, we assumed that the
public lighting is available.
∗ Indicates that the data from the original data sources required specific preprocessing (e.g. for normalization) described in
the Methods.

network. The edge betweenness is a network centrality measure capturing the number of
the shortest paths that go through an edge in the network. A summary of all features is
provided in Table 2. As for the city-level analysis, we use Strava data on cycling to quantify
female preferences for a street s. We measure the proportion of female cyclists out of all
cyclists travelling via street s, and call this metric σs. The indicator σs is a direct street-
level extension of σc—indeed σc can be constructed averaging over σs with weights equal
to the product between the length of each street and the total number of cyclists on it. The
larger σs the greater are womens’ preferences to cycle on street s. Compared to a simple
count of female cyclists, this relative measure has the advantage of quantifying female-
specific preferences towards a street s, irrespective of the total level of popularity of the
street. Therefore, the metrics will not be distorted towards streets that are very popular
for cyclists in general (for instance for their position in the street network), but that may
not present features that are particularly appreciated by our target group.

In addition, we adopt a data-driven approach to filter streets with a low number of cy-
clists (described in the SI). This filtering ensures that the observed σs is computed on a
sufficiently large cyclist base. The distribution of σs is bell-shaped with a mean around
0.12 and a range between 0.00 and 0.41 (Fig. 4). Stratifying the distribution by protection
level of the street (‘No cycleway’, ‘Unprotected cycleway’, ‘Protected cycleway’), we see
that streets with no forms of dedicated-infrastructure are typically associated with lower
σs than streets with either protected or unprotected cycleway: the median value of σs for
streets with no cycleway roughly corresponding to the 25th percentile of both the dis-
tributions of streets with protected or unprotected cycleways. This descriptive evidence
provides a first indication that streets with some form of cycling infrastructure are typi-
cally used more intensively by women than streets with no dedicated infrastructure at all.
To delve deeper into women’s preferences for dedicated cycling infrastructure, we study
the degree of association between the presence of protected and unprotected cycleways
and σs by means of a logistic regression analysis. We classify streets into two classes, Low
and High, corresponding to the bottom, and top 33% of the distribution of σs and estimate
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Figure 4 The case of New York City: streets characteristics and σs . a) The map displays streets in the borough
of Manhattan included in the final sample. A 10-quantile color scheme has been used for the value of σs . The
inset is the distribution of σs for streets included in the final sample (computed over the entire city of New
York). b) The map displays the protection level of streets in the borough of Manhattan included in our sample.
Yellow: no cycleway, light-blue: unprotected cycleway, dark blue: protected cycleway. The inset displays the
box plots of σs for streets with different levels of protection (computed over the entire city of New York). ‘ns’,
‘*’, ‘**’, ‘***’, ‘****’ indicate the significance level of a Mann-Whitney-Wilcoxon test two-sided with Bonferroni
correction, with the following p-values thresholds: 1e–4:‘****’, 1e–3: ‘***’, 1e–2: ‘**’, 0.05: ‘*’, 1: ‘ns’

the Odds Ratios (OR) via multivariate logistic regression. To check the robustness of the
results, the analysis is repeated choosing different thresholds α (0.25 and 0.40, instead of
0.33) for the classification. The results (presented in Fig. 5) are consistent across sample
specifications, with generally slightly larger estimates on more extreme samples (lower
values of the threshold α).

The main result pertains to the role of dedicated cycling infrastructure. With an es-
timated OR of around 4.08 (95% confidence interval: [3.67, 4.54]), the analysis indicates
that the odds to be classified High are more than four times greater for protected cycle-
ways than for streets with no cycleway (used as baseline). This result is largely in line with
the survey-based literature on the gender-cycling-gap, according to which women would
favor physical separation more than men [12–14]. Though smaller in magnitude, we es-
timate a similarly positive association between the presence of an unprotected cycleway
and σs. This analysis suggests that, whenever protected cycleways are not feasible due to
either budget or physical constraints, the use of shared unprotected cycleways would still
be a way to make the urban environment more accessible for female cyclists. In light of
recent findings [31, 32] which suggest that unprotected cycleways would not enhance the
degree of safety of the road-network for cyclists, our results suggest that subjective safety
may matter more than objective safety. In terms of other control variables, in line with
the assumption that women favor more quiet streets, we estimate an OR below 1 for our
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Figure 5 Odds Ratios of multivariate logistic regressions, for several levels of the threshold α a) the chart
presents estimated ORs for a multivariate logistic regression where the target variable is the binarized σs and
the predictors are listed in Table 2. The squared dots are the point estimates. The straight lines are the
estimated 95% confidence interval for the corresponding OR. The model was estimated on three different
sample selections, with the threshold α corresponding to 0.25 (yellow), 0.33 (light-blue) and 0.40 (dark blue).
The ORs are computed exponentiating the corresponding estimated coefficients. For each estimated model,
the legend reports the value of the threshold α , the number of observations and the in-sample accuracy.
b) The histograms show the mapping between the σs and the binarized σs for the three values of the
threshold α : 0.2 5 (yellow), 0.33 (light blue) and 0.40 (dark blue)

proxy for traffic-flow (Edge-betweenness) and for the volume of accidents (by any type of
vehicle). The positive association with the volume of bicycle crashes, on the other hand,
is likely to be the effect of reverse causality: a more balanced gender ratio is typically as-
sociated with a larger volume of cyclists, with an increased likelihood of bicycle crashes.
The two dummies on coast and park proximity, here inserted as a proxy for the natural
environment within which the street is located, appear to have opposite effects, with an
estimated OR above 1 for Coast proximity and below 1 for Park proximity (with the latter
being only statistically significant at 0.05 level for α = 0.25). On one hand, the reason for
the high coast proximity value is due to the morphology of the city of New York and the
presence of a long protected cycleway along the coastline of Manhattan acting as an at-
tractive infrastructure and impacting nearby streets too, with many cyclists riding through
to reach it. On the other hand, the negative association with the Park proximity dummy
can be traced back to the location of the green areas under consideration, often in non-
central locations (note that streets within Central Park largely fall into the excluded part
of the distribution around the median value). Information on the presence of public light-
ing is generally very sparse in OSM and particularly for New York City (we assume public
lighting to be absent only whenever explicitly stated, with less than 100 streets classified
as without public lighting), therefore the negative estimated OR requires further analysis
with more complete data. Finally, although hard to generalize to other urban contexts, we
observe strong negative neighbourhood effects, particularly for the boroughs of Brooklyn
and Queens (compared to the baseline borough of Manhattan).
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Figure 6 Odd Ratios of minimal logistic models, for all cities in the sample. The charts present estimated ORs
of minimal logistic regressions, where the target variable is the binarized σs regressed against a categorical
variable for the protection level of the street (three classes: No protection (baseline), Protected cycleway and
Unprotected cycleway). The models are run for each city separately. The squared markers are the point
estimates for Protected cycleway and the circular markers are the points estimates for Unprotected cycleway.
The straight lines represent the estimated 95% confidence interval for the corresponding OR. Only statistically
significant ORs (significance level 0.95) are pictured. For each city, the minimal model are estimated on three
different sample selections, with the threshold α corresponding to 0.25 (yellow), 0.33 (light-blue) and 0.40
(dark blue). The ORs are computed exponentiating the corresponding estimated coefficients. Only cities with
at least one statistically significant ORs are pictured

2.3.2 Generalization to other cities
In the previous section, the city of New York was chosen as a case study due to the avail-
ability of additional street-level data from administrative sources. Furthermore, with its
generally well-known city structure, New York represents a perfect testing environment
for urban studies. In this section, we investigate to what degree the previous results on the
role of protected and unprotected cycleways can be generalized to other urban environ-
ments. For all cities in our sample separately, we compute the ORs of a minimal logistic
regression, where the binarized street-level gender ratio is regressed against a categori-
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cal variable for the protection level of the street (three classes: No protection (baseline),
Protected cycleway and Unprotected cycleway). The processing and filtering of the data
follow the same steps undertaken for the city of New York. Results are reported in Fig. 6,
where only ORs statistically different from 1 (significance level of 0.05) are pictured. With
the exception of eight cities (four cities in Italy, three in the US and one in Benelux), the
minimal models confirm a positive association between the presence of a protected cycle-
way and the probability that the street belong to the high gender ratio class, as we observe
ORs above 1 for most cities in our sample. By contrast, no clear pattern is observed for
unprotected cycleways across cities. This could be due to the fact that while protected
cycleways ensure a certain degree of safety, the level of danger associated to unprotected
ones is likely to depend on many additional features of the street, necessarily not encoded
in this minimal model.

3 Discussion
In this study, we investigated the determinants of the gender-cycling-gap using data for
over 60 cities in Europe and the United States. Unlike the vast majority of previous analy-
ses that used survey-based data, we leveraged large automatically collected data from the
online sport-tracking application Strava. While Strava represents a unique data source on
cycling-related behavior—it was used by approximately 36 million users over 195 coun-
tries in 2018 [23]—it is noteworthy that it is better suited to describe the behavior of
regular cyclists than occasional ones. As such the sample of this study might differ from
other analyses surveying across different groups (regular cyclists, occasional cyclists, no-
cyclists). Furthermore, most of the activities tracked in Strava are recreational as opposed
to commuting.

In the first part of the study, we related female cycling rates in different European and
American cities to macro city-level characteristics. The analysis was conducted control-
ling for the macro geographical area of the city, to control for differences in the penetration
rate of the app among men and women across areas. We found evidence for traditional
hypotheses which link the observed gender gap in cycling to gender-specific preferences
on road safety. Additionally, we found higher female cycling rates in flatter than in hillier
cities, also in line with the literature [16]. This is an interesting result as there may be
structural, morphological or cultural [33] constraints for specific places where the cycling
uptake is harder to increase for women. For urban planning, this result suggests that ad-
hoc infrastructural interventions such as the provision of cycleways or the enlargement of
the low-speed limit zones could have limited efficacy in these contexts and may require
concurrent behavioral incentives, for instance to expand the adoption of e-bikes. A novel
result concerns the strong association between the gender-cycling-gap and the air quality
of a city, which however requires further research within a (quasi-)experimental setting.

In the second part of the study, we shifted the focus from a macro comparison across
cities to a micro-level analysis, at the level of single streets. If the first analysis successfully
provided evidence for and expanded existing hypotheses (further validating our data as a
reliable source on cycling behavior), the second aims at capturing the role of urban fea-
tures modelled at a higher resolution and delving deeper into the association between the
gender-cycling-gap and the presence of dedicated cycling infrastructure. We selected the
city of New York as case study for this component of the study. Using multivariate logis-
tic regression analysis, we have shown the existence of a positive association between the
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volume of female cyclists (relative to men) and the presence of dedicated cycling infras-
tructure. The positive association between σs and the presence of a protected cycleway
was expected and well-documented in the literature, which highlights the strong prefer-
ence of women for physical separation from motorized traffic [12–14]. We also showed
that this result generalizes to most of the cities in our sample. More novel and interesting
is the observed association with the presence of an unprotected cycleway. In light of recent
studies showing that unprotected cycleways may not enhance the degree of objective road
safety [31, 32], our result suggests that the perceived degree of safety may induce women
to cycle more than the actual degree of safety in specific environments. This result, how-
ever, doesn’t generalize to all cities in our study, suggesting that not all interventions in this
sense are equally effective. Therefore, in contexts where no physical separation is possible
(for instance for space or budget constraints), the provision of shared cycleway may still
act as a way to make to urban environment perceived as more accessible by women in
certain contexts. However, given that the increase in the perception of safety induced by
this type of infrastructure may not always translate into a lower risk cycling environment,
the planning of this type of infrastructure should be evaluated carefully by city planners,
for instance favoring specific solutions associated to greater safety levels.

Overall our study validated survey-based results quantitatively using unprecedentedly
large-scale automatically collected data. As previously discussed, Strava is among the ma-
jor applications for sport tracking and as such, reliable information on cycling behavior
for regular cyclists. The main limitation of our study pertains to the representativeness of
Strava users and the purposes of Strava trips. For example, having a considerable gender
gap in the Netherlands (Fig. 1), contrary to expectations [11], the Strava data are clearly not
representative, and neither users nor purposes of use can be clearly inferred. We therefore
stress that Strava does primarily reflect recreational cycling, and that its ability to describe
other cycling behaviors should be explored with richer data sets or qualitative methods.
More generally, while the use of large automatically-collected data allows us to explore
phenomena at an unprecedented scale, the absence of a data collection design step might
result in the inclusion of biases. The main source of bias in our analysis relates to the pen-
etration rate of Strava, which 1—might differ across geographical areas, 2—might differ
between men and women, within the same geographical areas. To account for these po-
tential biases, we adopted two mitigation strategies. First, in the analysis at city-level, we
included geographical dummies to control for differences in the penetration level of the
app for the two genders depending on the geographical area of the city. The main assump-
tion we relied upon is therefore that cities within the same geographical area have a similar
bias in the use of the app among men and women. We opted for the use of geographical
dummies since the number of cities in our sample was insufficient to opt for a fully inter-
acted model. In addition, a sensitivity analysis is provided in the SI, where other mitigation
strategies to control for this bias are adopted leading to highly comparable results. Sec-
ond, in the analysis at street-level, the imbalance in the proportion of Strava users is taken
into consideration by using the lowest and top quantiles of the gender ratio distribution to
identify the ‘high gender-ratio’ vs ‘low gender-ratio’ streets rather than setting a fixed cut-
off value. A second limitation of the Strava data set is the inability to extract the potentially
useful information of cyclist volumes [34], as the raw data are not individual cycling traces
but Strava segments with only aggregated statistics. This aggregation also implies that the



Battiston et al. EPJ Data Science            (2023) 12:9 Page 15 of 21

same cyclists may cycle on many segments in one or multiple sessions and we would not
be able to identify them.

It is unclear to which extent our results can be generalized to cycling for purposes other
than recreational, such as transport, and to less-skilled cyclists (occasional cyclists and not
cyclists). It is therefore important to find data sources that are able to reliably distinguish
between such purposes and users, since gender-based constraints can differ between these
categories [35]. However, since the survey-based academic literature on gender-cycling-
gap indicates that cycling preferences differ less among regular cyclists than among oc-
casional ones [12, 36], the results of our analysis could be interpreted as a lower-bound
and it is likely that the identified factors play an even larger role in explaining the gender-
cycling-gap in the general population. Another limitation concerns the cross-sectional
nature of the available cycling data. The absence of a longitudinal dimension limited the
extent to which temporal variations could be analyzed in the data, hindering the use of
policy-evaluation statistical tools such as diff-in-diff techniques to evaluate casual effects
along with correlations.

Finally, there is a variety of gender-specific constraints apart from street safety that fu-
ture studies should take into account, from cultural and psychological reasons [33, 34], to
other environmental factors and harassment by motorists [35, 37]. Gender inequality and
gendered transport habits may also play a large role, such as more frequent trip chaining
by women due to childcare and other errands [38, 39]. Therefore, while street safety and
urban design are undoubtedly important ingredients, there is no universal, simple fix for
getting rid of the gender gap in cycling towards more sustainable mobility. It remains a
complex societal issue that needs to be tackled from multiple angles [7].

4 Methods
4.1 Strava data on recreational cycling: data collection and processing
Data collection Raw Strava data consist of a collection of Strava segments for 62 cities
located in four geographical areas: the United States, United Kingdom, Benelux (Belgium,
Netherlands and Luxembourg) and Italy. For the sensitivity analysis only, the dataset was
extended to include 8 additional cities across other European countries. A Strava segment
is a single portion of a road or a trail upon which users of Strava compete by recording their
times. The performance of a user training upon a segment is automatically recorded into
its leaderboard, which in turn provides a picture of the characteristics of users cycling on a
specific trail. Each raw data record consists of geographic information about the segment
in the form of a linestring of lat-long coordinates, enriched with the following statistics
extracted from the associated leaderboard:

1. the total number of unique cyclists training on the segment. This information
corresponds to the sum of the length of the female and male leaderboards (it should
be noted that—irrespective of the number of training performed on the
segment—each cyclist is only included once in the corresponding leaderboard,
according to their best performance on the segment);

2. the gender split of users training on the segment, in terms of the length of the female
and male leaderboards respectively (corresponding to the number of unique female
and male cyclists training on the segment).

The data collection comprised of two phases, both undertaken in November 2018. In
the first phase, we collected the whole corpus of segments (∼16.4 million) available at the
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time through the Strava API. This step provided us with a the geographical information
related to each segment, identified by its ID. The second phase consisted in the collection
of summary statistics from the female and male leaderboards (with two separate queries
for the same ID) associated with each segment. In particular, given a city, we made queries
for the leaderboards of all the segments whose geometry is contained for at least 75%
within the city boundary. The SI provides information on the characteristics of raw Strava
segments for each city in our sample.

Remapping of Strava data To identify the gender of cyclists travelling upon the street
network of each city, Strava data were re-projected on the street network of the corre-
sponding city, extracted from OSM [27]. The remapping followed the six-step pipeline
described below.

1. Load the Strava data for city c.
2. Extract the bounding box of city c from the Global Human Settlement—Urban

Centre Database 2015, version 2019A (GHS-UCDB R2019A) [40].
3. From OpenStreetMap, extract the street network within the polygon defined in the

bounding box using the OSMnx library [41]. Set: network_type = ‘bike’,
retain_all = True, simplify = True.

4. Classify streets in the street network based on OpenStreetMap attributes in: ‘street
with protected cycleway’, ‘street with unprotected cycleway’ and ‘street with no
cycleway’. The (key, value) pairs for the classification are provided in the Table S1 in
the SI. All other bikable streets are classified as ‘no cycleway’.

5. Proceed with the preferential assignment of Strava segments as follows. Buffer with a
10 meters radius the geometries of the street network. Select all streets categorized as
‘protected cycleways’ and intersect each Strava segment with the network. Re-project
each segment (or portion(s) of a segment) on all streets with an intersection of at least
30 meters. Finally compute the geometries of Strava segments left unassigned—that
could be either a full segment or portion(s) of a segment—and repeat the procedure
selecting ‘unprotected cycleways’ first and subsequently streets with ‘no cycleways’.

6. Compute the gender ratio of each street in the street network using statistics from
the re-projected Strava segments. In particular, letting I be the set of segments
re-projected to street s, Femalesi (Malesi) the number of unique female (male)
cyclists on segment i, the total number of female cyclists on streets s (and
correspondingly for male cyclists) is defined as:

Femaless =
∑

i∈I

Femalesi. (1)

The gender ratio (σs) of street s is then computed as:

σs =
Femaless

Maless + Femaless
=

∑
i∈I Femalesi∑

i∈I Femalesi + Malesi
. (2)

The rationale for the preferential assignment is that if a cycleway runs parallel to a street
with no cycleway and the linestring geometry for the Strava segment is compatible with
both streets (i.e. it falls within the buffered geometry of both streets), we assume that the
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cyclists rode on the cycleway rather than on the street with no cycling-dedicated infras-
tructure. This approach prevents us from remapping the same portion of a Strava segment
to multiple parallel streets with different characteristics.

Construction of the city-level index of the gender-cycling-gap The gender-cycling-gap of
city c is measured by σc, defined as the ratio between the total kilometers travelled by
female cyclists and the overall kilometers travelled by cyclists of both gender within the
urban area. The rationale for the use of this metric is its ability to capture two forms of
gender gaps described in the literature on cycling and gender: the propensity of women
to make less trips then men and the propensity to cycle shorter distance. This measure is
equivalent to the weighted sum of the gender ratio on streets (σs) within the urban area,
with weights equal to the product of the length and the total popularity (total number of
cyclists) of the street. I.e., letting S be the set of streets in the street network of city C,
Femaless (Maless) the number of female (male) cyclists on s and ls the length of street s
expressed in kilometers, σc is defined as:

σc =
∑

s∈S Femaless ∗ ls∑
s∈S(Femaless + Maless) ∗ ls

=
∑

s∈S σs ∗ ls ∗ (Femaless + Maless)∑
s∈S(Femaless + Maless) ∗ ls

. (3)

4.2 Understanding the determinants of gender-cycling-gap—a cross-cities
analysis: data, and methodology

Data sources A full list of data sources used for this strand of the study is provided below.
• Data on recreational cycling at city-level from Strava. The data were processed

following the steps described in the previous section.
• City-indicators from the GHS-UCDB R2019A [40]. The following information was

extracted:
1. the share of population living in green areas: data field SDG_A2G14;
2. the percentage of open space: data field SDG_OS15MX ;
3. the built-up area per capita, data field BUCAP15;
4. the average night-light emission: data field NTL_AV ;
5. the concentration levels of PM2.5: data field E_CPM2_T14;
6. the city area: data field AREA;
7. the population density: computed as P15

AREA ;
8. the GDP per person, computed as GDP15_SM

P15 .
• Street network indicators from [28]. Out of the list of available indicators, we

extracted the average absolute street grade, the average degree, orientation order, the
proportion of three-way intersections and the average street straightness.

• Urban safety indicators measuring the proportion of the street network with
cycleways and the proportion of streets with low speed limit. These data were directly
constructed from OSM [27] information following the pipeline in the following
section.

• The Global Gender Gap Index (country-level) from the World Economic Forum [42].
Included in the sensitivity analysis only.

It should be noted that the final sample for this component of the analysis consists of 61
cities. The city of New York was excluded from this component of the study due to the
large discrepancy between the administrative area of this city and the bounding box of the
GHS.
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Construction of urban road safety indicators OSM information accessed via the Python
library OSMnx [41] was used to construct the two indicators on urban road safety. The
indicator on the proportion of streets with max-speed limit equal or below 20 mi/h or
30 km/h (referred to as speed limit throughout the manuscript) was constructed according
to the pipeline described below.

1. For each city c, extract the bounding box of city c from the GHS-UCDB R2019A [40].
2. Extract the street network from the polygon defined in the bounding box using the

OSMnx library [41]. Set: network_type = ‘drive’, retain_all = True.
3. Compute the proportion of streets satisfying the condition on the speed limit.

Weight each street with its length.
The indicator on the proportion of streets with cycling-dedicating infrastructure (re-

ferred to as bike lanes throughout the manuscript) was constructed according to the
pipeline below.

1. For each city c, extract the bounding box of city c from the GHS-UCDB R2019A [40].
2. Extract the street network from the polygon defined in the bounding box using the

OSMnx library [41]. Set: network_type = ‘bike’, retain_all = True. Call this graph G0.
3. From OSM [27], extract the street network from the polygon defined in the bounding

box using the OSMnx library. Set: network_type = ‘drive’, retain_all = True. Call this
graph G1.

4. Define as cycleways all streets in G0 with the pairs of OSM attribute described in
Table S2 in the SI.

5. Sum over the length of all ‘cycleways’ in G0.
6. Sum over the length of all streets in G1.
7. Define the index as the ratio between the metric computed at point 5 and the metric

computed at point 6.

Regression analysis We estimated a linear regression model of the form:

σc =
N∑

j=1

βjzj,c + εc, c = 1, . . . , 61 (4)

via Ordinary Least Squares (OLS), where the list of regressors zj in the preferred model
includes: speed limit, orientation, GDP, 3-way crosses, night-light emissions, grade, pm2.5
plus three dummy variables for the macro area to which the city belong (US, UK, Benelux,
baseline: Italy). All continuous regressors were normalised using a z-score transformation.
Out of the initial 15 city-level indicators collected (provided in Table 1), the final subset of
seven indicators (plus the three country-level dummies) included in the regression were
selected via exhaustive search to minimize the Akaike Information Criterion (AIC) of the
model. The model is estimated using the OLS function of the Python library statsmodel
[43].

4.3 Case study on the City of New York: data and methodology
Data sources A full list of data sources used for this component of the study is provided
below.

• Data on recreational cycling at street-level for the city of New York from Strava.
The raw Strava data were processed and remapped to the street network of each city
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extracted from OSM following the steps described previously. A network definition of
streets was used, which does not reflect a the toponymy of streets.

• OSM data on street-level characteristics extracted during the process of remapping of
Strava data via the python library OSMnx [41]. In particular, for each street, we
retained information on: the presence of public lighting, the presence of protected or
unprotected cycleways, proximity with a park or with the coastline and whether the
surface is paved. A list of OSM key-value pairs is provided in Table S3 in the SI. In
addition, for streets in the largest component of the street network, we computed the
edge-betweenness [30] via the Python library graph-tool [44]. Streets outside the
largest component of the network (i.e. streets in the borough of Staten Island) were
excluded from the sample.

• Administrative data from the OpenData Portal of the city of New York on location of
all (any-vehicle) accidents and bike accidents only [45]. These data were processed to
compute the number of accidents per 10 meters, for each street.

• Shapefiles of the administrative boundaries of boroughs in the city of New York [45].

Multivariate logistic regression To assess the degree of association between σs and the
presence of cycling-dedicated infrastructure, we estimates a multivariate logistic regres-
sion model. We restricted the sample to streets belonging to the bottom and top 33% of
the distribution of σs and classified streets in Low and High σs respectively. As a robustness
check, the analysis was repeated for alternative values of this threshold (0.25 and 0.40, in-
stead of 0.33). We used features described in Table 2 as predictors and the binarized σs as
the target variable. Moreover, we scaled continuous predictors (Any-vehicle crashes, Bike
crashes and Edge-betweenness) using a z-score-transformation to normalize the magni-
tude of the estimated coefficients. he model is estimated using the Logit function of the
Python library statsmodel [43].
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