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Figure 0.1: Map showing the locations of cities studied in this thesis. A global set of 100 cities and
all German cities with more than 100,000 inhabitants.

Abstract

This thesis investigates the impact of the spatial order of cities on the performance of presented,
data-driven partitioning approaches. The study addresses two research questions: 1. How does
the travel time change if all neighborhoods were Low Traffic Neighborhoods (LTNs)? 2. What
LTN configuration can we suggest for different types of cities? We present a framework to analyze
the impact of LTNs on travel time that utilizes Open Street Map (OSM) street data, and GHSL
population data to calculate network measures, such as directness, global efficiency, average circuity,
street orientation order. Central components of this work are the LTN generation, evaluation, and
visualization. The evaluation of 100 global cities and 80 cities in Germany reveals that both a
residential-based approach and a betweenness-based approach yield positive results, with minimal
travel time increases. This research contributes to the understanding of the impact of LTNs on
travel time and provides a framework for the simplified generation and evaluation of LTNs.
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Where light traffic
knits a community together,
heavy traffic rips it apart.

— Bruce Appleyard [Sim21]



1. Introduction

1. Introduction

Urban planning is a diverse field with continuously evolving guidelines and practices. And they
necessarily change, simply because history and the society in which they emerge are reshaping.
Additionally, to the general increase in population, the last decades faced us with continuous
urbanization; the fraction of people living in rural areas shrinking [RR18]. As urbanization increases,
so do greenhouse gas (GHG) emissions [Sat09], with an impressive half of the city’s GHG emissions
being transport related [Kra+16], placing this issue in the context of the current climate crisis
[Rip+20; Rip+22]. Other than that, further interwoven effects connected to urbanization are already
intensifying. To name one, the urban heat island effect increasing the risk of heat-related mortality.
These mutually related topics need to be dealt with in union if we don’t want to risk underestimating
their outcome [Cha+17; KVK23; Par+23; Sat08; Xin+22].

Traffic-calming is one way to improve the situation [ZF23]. This way GHGs are reduced by having
less speeding cars, less traffic or, at best, fewer cars, optimally in conjunction with public transport
expansion and improvement [Ali+21; KR09]. But not all traffic-calming measures are created
equal. The road type also plays a role in GHG impact with several factors, one being the material
production emissions [Sab+23]. And just to mention it once: this set of issues is furthermore closely
linked to and has resonant implications for issues of equity, accessibility, and societal integration
[DB23; Mon14; BB21; BB18].

Concepts of changing the land use policy come under various names: Some of the most prominent
representatives are Low Traffic Neighborhoods (LTNs), traffic islands, and superblocks. Planning
of LTNs is a long an tedious process which encompasses several factors [Nie+19]. Additionally, to
the logistics of LTN implementation, governments first need to involve local stakeholders that are
directly affected. Urban planning requires knowing traffic patterns and analyzing travel behavior
while respecting local neighborhood knowledge. After going over the regulatory considerations and
implementing the changes, LTNs are monitored to evaluate their effect [Tra20; Sus]. In the course of
this process, decisions can have a political drift despite favorable feasibility studies [Grä23; Sta21].

With this thesis we want to answer two central research questions:

1. How does the travel time change if all neighborhoods were LTNs?

2. What LTN configuration can we suggest for different types of cities?

Our goal is to find a way to create LTNs in a data-driven way, while keeping factors in mind that
are important for the success of LTNs. We will measure success with measures from network science,
and monitor distribution of LTN generation, e.g. LTN area, population, population density, and
demand change by betweenness centrality. To get a grip on this complex topic, there are many
factors that need to be simplified or abstracted. This is why for the transportation graph we focus
on the drivable street network, as experienced by the private car mode, and assume an all-to-all
travel demand. Scoping the problem this way, we can profit from Open Street Map (OSM) data,
which is globally available and has enabled a wide variety of research. We will also assume that
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1. Introduction

generated LTN structure is implemented in a way that selected areas are not permeable for private
motorized traffic, so the detailed implementations of traffic-calming measures is not to our concern.

Key contributions of our work lie in implementing a framework for LTN generation, the evalu-
ation of the generated LTNs with network science measures, and visualization of the generated
partitions. Additionally, we provide a plug-and-play solution, encompassing transport network
download, preprocessing, including population approximation on a street level, and population
density calculation.

There has been a growing interest in the superblock model in recent years. Mueller et al. estimated
the health implications of implementing superblocks in all of Barcelona. They estimated that when
implementing 503 superblocks across Barcelona, 667 premature deaths (95% confidence interval (CI):
235 to 1098) could be prevented annually. They include various factors in their analysis, namely
NO2 reduction, noise reduction, heat reduction, and green space development, and conclude that the
superblock model should be implemented consistently across the entire city to achieve an equitable
distribution of health benefits [Mue+20]. Eggimann computationally implement the definitions
of the Barcelona Superblock model to find areas in cities that satisfy the criteria in Switzerland
[Egg22a] and globally [Egg22b]. Only 3% to 18% of the current street network in the nine largest
Swiss cities were simulated to be potentially suitable for superblock implementation. But this only
concerns superblocks by narrow definition to increase green space, notwithstanding other low-traffic
formats. A different field of research deals with the analysis of already implemented superblocks. A
method of measuring superblocks by their hierarchy matrix of geometry configuration, network, and
area is proposed by Song and Pang. They validate their method on the case study of Nanjing, China,
and conclude that the hierarchy matrix is potentially a useful method for studying the complex
emerging built form of rapidly changing cities, especially in developing countries, such as China
[SP23]. Ge and Han do a similar sustainability-oriented configurational analysis of the same case
study [GH20]. Studies focusing on very specific aspects of superblocks also exist. Urban ventilation
patterns of superblocks are analyzed using numerical methods by Maing. They conclude that the
internal architecture is not just affecting the ventilation of the block itself, but also the surrounding
ventilation and the wind reaching further into the block, and is a relevant factor in terms of health
and comfort [Mai22]. Superblock identification as done by Eggimann [Egg22b] is the closest to come
to our proposed goal, but to our knowledge, there has not been an automatized approach to generate
LTNs by our problem definition.

Diverse books focus on urban planning, quality of life, sustainability, equity, and health. To name
a few, Bruce Appleyard discusses the topic of urban livability and street design [App21], carrying
on the legacy of his father Donald Appleyard, also doctor of urban planning [AGL81]. In [Gra23],
Grabar explains the state of car-centered mobility and related topics on the example of car parking
in the US. Speck points out flaws of Americas urban planning and proposes solutions [Spe13], which
he compiled into a list of 101 rules in his book Walkable City Rules [Spe18].

The rest of this thesis is structured as follows. Section 2 introduces the necessary background knowl-
edge, including explanation of further LTN concepts, the street graph representation, partitioning
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1. Introduction

requirements, and introduction to important graph metrics in Section 2.3. The methodology is
explained in Section 3, with the data sources and main ideas of the road network sparsification
algorithms. The developed Python package is outlined in Section 3.3, Section 3.3.1 shows an usage
example of the package, and some implementation details are discussed in Section 3.3.2. Section 3.4
explains the experimental configuration, which is then used to obtain the results evaluated in
Section 4. Finally, Section 5 concludes the thesis, answering the research questions and sets the work
into context.
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2. Preliminaries

To understand LTN and how to automatize their generation, we first give an overview of several
LTN concepts and recent scientific findings of the impact. Specifically, we present the Barcelona
Superblock concept and the idea of traffic islands on the example of Copenhagen. In Section 2.2 the
graph representation of a transportation network is introduced, and the formal partition requirements
are defined. The several network metrics relevant to answer the research questions are presented in
Section 2.3.

2.1. Low Traffic Neighborhoods (LTNs), the Barcelona Superblock Model and
Traffic Islands

Influences on traffic-calmed neighborhoods have come from around the globe. For example, the
concept of “garden-settlements” (poselki-sady) has been developed in the late 19th century in
the Soviet Union, inspired by the English Garden City movement [How98], and in the mid 20th
century, the idea of “microregions” (mikroraiony) followed as a response to the housing crisis [Cra22].
Historically, grid structures similar have also been prevalent in several Asian cities [Che22].

To explain the various terms used in the literature, we will briefly introduce the most common
ones. Low Traffic Neighborhood (LTN) is the most general term, symbolizing a concept where
neighborhoods are treated with various traffic-calming measures. Traffic islands embrace the idea to
specifically introduce zoning with mode filters, disconnecting these traffic islands for private motorized
mobility, while knitting the city closer together for bicycles, public transport, and micromobility.
This reduces short car trips inside the city, while keeping the regional connection for motorists
[Mar21]. Superblocks are a certain format of LTN where plots—parcels with buildings—are grouped
to form superblocks with inner streets transformed to pedestrian boulevard, providing urban greenery,
and thus reducing motorized transport. The outer streets are kept as the basic road network. The
common ground of these is the goal of reducing or eliminating through traffic. In this way, social
cohesion can be fostered, while keeping in mind the ecosystem in which we inevitably live [Rue19].
A specific format of superblocks is the Barcelona Superblock model, shown in Fig. 2.1. It builds
on the historical grid structure of the city—grouping plots to form superblocks—and draws from
the former Plan Cerdà (see Fig. 2.2). Each block is 113.3m × 113.3m in size, with some exceptions.
The usual group of blocks is 3 × 3 blocks. Defining the Barcelona Superblock, a superblock usually
is between 300m × 300m and 400m × 400m in size. Formerly, the inside of the blocks was used
for greenery, some blocks with open sides, but as urbanization progressed, the blocks gradually
densified. The superblock model aims to reverse this trend by pedestrianizing the inner streets, and
transforming the space to contain more greenery [Rue19]. Several superblocks in Barcelona have
been implemented and thoroughly studied, with growing numbers of transformed districts1.

1See an interactive map of the recent accompanying measures at https://www.barcelona.cat/
pla-superilla-barcelona/mapa/en/.
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The dimensions of this urban unit are approximately 
16-20 hectares, or 400x400 m, which is equivalent to nine blocks 
in Barcelona’s Eixample neighbourhood (the superblock archetype). 
The superblock is the starting point for reorganising mobility net-
works and is defined by a structure of peripheral routes (basic roads) 
on which surface transport networks circulate and the maximum 
speed is 50 km/h. Inside the superblocks (local roads), the vehicle 
speed limit is 10 km/h: a measure that calms traffic, makes the space 
compatible with citizens’ uses and rights, and prioritises pedestrians 
and cyclists. 

Superblocks offer an ultra-efficient way of integrat-
ing transport networks while guaranteeing the city’s functionality 
and organisation, and in turn, free up a significant amount of public 
space currently dedicated to transit. In the city of Barcelona, if 
the number of vehicles on the road were reduced by 13%, 70% of 
the public space could be freed up. This reorganisation of mobility 
opens up a host of options that are not viable when motor vehicles 
occupy the streets. The freed-up space can then be used for urban 
uses that would be unimaginable otherwise.

Space for 
shared uses, 
with priority for 
pedestrians

New square

Space for 
pedestrian 
movement 
(pavements)

Space for motorised 
traffic

Road 
hierarchy

Motorised 
transport can 
pass through all 
the streets in 
the superblock.

A new mobility 
configuration 
is designed to 
prevent traffic 
within the 
superblock. 
Traffic cannot 
pass through in 
a straight line.

Before…

Basic network

Withing the 
superblock

Superblock

There are no 
cycle lanes 
within the 
superblock. 
Cyclists can 
move in both 
directions and 
adapt to the 
uses of the 
public space at 
any given time.

Main cycling 
network. 
Separate lane 
on the basic 
road network 
(peripheral 
routes 
around the 
superblock).

Pedestrians

Cyclists

Maximum speed: Maximum speed:

Source: BCNecologiaFigure 2.1: Three aspects of the Barcelona Superblock model [ABÀ21]. Using the existing chessboard
structure of the city, the superblocks are formed by grouping plots. Inner streets are
pedestrianized, while keeping access for residents and deliveries. The space is transformed
to contain more greenery, social spaces, and streets on the border elevated to pedestrian
level, removing the distinction between sidewalk and street. The cycling network is
moved to peripheral routes outside the block, inside it is inherently safe for cycling.
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Figure 2.2: The approved Plànol del projecte Cerdà for Barcelona from the year 1859. Building
footprints are shown in red and green space was reserved as public, green space. [Cer59]

Motivation changing our urban environment, implementing LTNs and superblocks, is manifold.
At the same time, it is important to monitor the effects of these interventions, to verify impacts,
and mitigate negative side effects. Goodman and Aldred found that LTN introduction resulted in
a (10 ± 3)% reduction of street crime with a 95% confidence interval (except bike theft, due to
increased number of bicycles), and no evidence of displacement of crime [GA21]. It was also found
that there is no evidence for effect on fire service emergency response times [Goo+21]. But there
is also an effect on motor-vehicle ownership, which was found to be reduced for residents in LTNs
[AG20; GUA20]. The opposite of induced traffic, traffic evaporation, has been found in Barcelona
as a result of traffic-calming interventions. In numbers, a reduction of 14.8% traffic compared to
streets in the remaining city [Rue19]. At times, fears of traffic congestion related to reduced motor
vehicle road space are raised, but Nello-Deakin found these to be unfounded [Nel22]. The positive
health effects found are not only caused by reduced air pollution, noise reduction, heat reduction,
and increased greenery [Mue+20; ABÀ21], but also by safer walking, cycling, and driving. Laverty,
Aldred, and Goodman find that data suggests a reduced risk of injury across all travel modes inside
LTNs without negative impacts on the boundaries [LAG21]. LTNs show to have the potential to
improve equity across citizens, but for this to unleash its full potential LTNs need to be deployed
distributed on the whole demography, Aldred et al. stress [Ald+21].

A scaled-up and modified version of the superblock model are traffic islands. The analogue used is
isolation of islands that are connected by few or singular connections to the mainland. Traffic islands

12
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Figure 2.3: Map of Copenhagen with colored traffic islands. The proposed area of intervention is
encapsulated by a ring road and a harbor tunnel (planned opening 2035) shown in black.
The green paths symbolize super boulevards which are dedicated active mobility links, not
permissive to the private automobile. The historical center (hatched in red) is proposed
to be totally car-free. [Mar21, Figure 8.8]

are areas that connect to the greater traffic network, but have boundaries that are not permeable to
the private automobile. Martin propose a plan where the isolation between traffic islands is achieved
by a complementary active mobility network, interlocking with the traffic islands. In Fig. 2.3 the
proposed traffic islands are shown in color. A clear difference to the superblock model is that the
traffic islands are not pedestrianized, possibly partially, but as the direct travel between islands is
prohibited for the private automobile, active mobility is motivated. This plan is expected to reduce
traffic congestion in the city and excessive car use. If one wants to travel between traffic islands
by car, one has to use the ring road or the harbor tunnel. Still, for emergency services and public
transport, the boundaries are permeable [Mar21]. Recently, Enhedslisten, currently Copenhagen’s
largest party, has advocated for the traffic island plan by Martin [Hor23; Køb23]. For our use case,
we will work with the LTN idea between the described models, not deciding on a specific LTN size,
and will not deal with the implementation of traffic interventions, as it would exceed the scope of this
thesis. An algorithmic approach only needs to return a set of LTNs containing streets considered to
be inside of such an area, and a sparsified network of streets that stays open for inter-LTN traffic.

2.2. Transport Network Graph Representation

There are several ways to represent transportation networks, mappings from the real world to another
representation, e.g., a visual representation as a hiking map or a graph representation as a network.
From application to application, useful representations can differ. We will use a directed multigraph

13



2. Preliminaries 2.2. Transport Network Graph Representation

� = (+, �, ;) with edges 4 ∈ � and vertices E ∈ + . The edges 4 are weighted with length ;, but
can have more attributes, like a type, street geometry, or a name. Also, the vertices E can have
attributes, e.g., geographical latitude and longitude. Edges represent streets, and vertices represent
intersections, junctions, or dead ends. Streets are specifically not the semantic entity of a road, but
a part of a road between exactly two intersections. Another way of dealing with a road network is
grouping edges to ways, inspired by the semantics of named roads [ERL22], or a dual construction
is defining road sections drivable without turns as nodes and streets connected by a turn as edges
[Lag15]. For the street graph, � we require a few more properties:

• Directed: The edges have a direction, e.g., from intersection 0 to intersection 1. In the case of
two-way streets are represented by two edges, one from 0 to 1 and one from 1 to 0.

• Strongly connected: There is a path from every vertex to every other vertex. In a street graph,
this means that every intersection is reachable from every other intersection.

• Loops: An edge can start and end at the same vertex.

As the transportation network can have bridges and tunnels, the graph is not necessarily planar. The
Python package osmnx [Boe17] implements such functionality to standardizedly retrieve OSM data
and simplify the network into a graph representation of the transportation network that satisfies
the above requirements after some filtering. It is based on the networkx [HSS08] package, which
implements graph algorithms and data structures.

Partition Requirements The street graph � will be split into partitions, one for each LTN and
one for the sparse network. This can be described by a partitioning P : � ↦→

(
�sp ∪ �1 ∪ . . . ∪ �:

)
returning subgraphs �8 ⊆ �, one sparse �sp, and : LTNs �8. Such a partitioning function P must
satisfy a union property

:⋃
8=1

�8 ∪ �sp = � (2.1)

and an edge-wise disjoint property

∀8, 9 ∈ {sp, 1, . . . , :} : 8 ≠ 9 ⇒ �8 ∩ � 9 = ∅, (2.2)

where �8 is the set of edges of �8. The union property (2.1) states that the partitioning function P
must return a partitioning of the whole graph �, in other words, no street should be left out. The
disjoint property (2.2) states that the partitions must be edge-wise disjoint, i.e., no street should
be part of more than one partition. This also means that from the set of edges �8 we can exactly
reconstruct the set of vertices +8. Our goal is to compare performance of automatized P, before
any restrictions are applied, to restricting paths to only use edges of the start and, end and sparse
network. Such for all paths ? = (4B, . . . , 4C ), where 4B ∈ �s and 4C ∈ �t, the path is a subset

? ⊆ �s ∪ �sp ∪ �t, (2.3)

14
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including paths starting or ending in the sparse network. To satisfy connectivity for P, a sufficient
condition is that the sparse network is strongly connected and that the LTNs are connected to the
sparse network. From anywhere in a neighborhood, it must be possible to reach anywhere else in a
city, without passing a foreign LTN. However, it is possible that with a start and end inside the
same LTN one must, by car, use the sparse network.

2.3. Network Metrics

To measure the differences in the street networks before and after the introduction of the LTNs,
there are a variety of network metrics available. Most central is that when introducing the path
restriction of Eq. (2.3) for all shortest paths between two nodes 8 and 9 , the shortest path distance
on the full network 3( (8, 9) changes to 3# (8, 9), expected to increase. The following paragraphs
introduce relevant metrics and their background.

2.3.1. Global Efficiency

Introduced to the complex network context by Latora and Marchiori in 2001, efficiency measures
the average inverse shortest path length in a network. A system considered efficient is one that is
well-connected, considering the edge weights. Two types of efficiency are distinguished: local and
global. Global efficiency is defined on a connected network

� (�) =
∑
8≠ 9∈� &8 9

# (# − 1) =
1

# (# − 1)
∑
8≠ 9∈�

1

3 (8, 9) , (2.4)

where # is the number of nodes in the network, 38 9 is the shortest path length between nodes 8
and 9 , and &8 9 is the efficiency between nodes 8 and 9 , defined as the inverse distance &8 9 = 1/3 (8, 9).
Local efficiency is the “average efficiency of the local subgraphs” [LM01]. Usually this measure is
normalized over a fully connected network of the same size, as seen in Fig. 2.4. In our case, we define
it as a relative measure between two metrics

�glob,# /( =

∑
8≠ 9

1
3# (8, 9)∑

8≠ 9
1

3( (8, 9)
(2.5)

where the normalization takes care of itself, as the number of nodes is the same in both networks. In
the case of only increasing distances, 3# (8, 9) ≥ 3( (8, 9), the efficiency is always 0 < �glob,# /( ≤ 1.

2.3.2. Directness

In contrast to efficiency, directness, also called straightness centrality, compares the variation of
distances before the summation [CLP06]. Usually in geospatial studies, the link lengths are compared
to the Euclidean distance. Instead of the Euclidean distance, we use the shortest path length on the
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FIG. 1. Global and local efficiency for the graph example con-
sidered in [2]. A regular lattice with N � 1000 and k � 20 is
rewired with probability p. The small-world behavior results
from the increase of Eglob caused by the introduction of only a
few rewired edges (short cuts), which on the other side do not
affect Eloc. At p � 0.1, Eglob has almost reached the value of
the random graph, though Eloc has diminished only by very little
from the value of 0.82 of the regular lattice. Small worlds have
high Eglob and Eloc.

of vertices. This occurs at the expense of the fault tol-
erance �Eloc � 0�. The small-world behavior appears for
intermediate values of p. It results from the fast increase
of Eglob (for small p we find a linear increase of Eglob in
the logarithmic horizontal scale) caused by the introduc-
tion of only a few rewired edges (short cuts), which on
the other side do not affect Eloc. At p � 0.1, Eglob has
almost reached the maximum value of 0.4, though Eloc

has diminished only very little from the maximum value
of 0.82. For an unweighted case the description in terms
of network efficiency resembles the approximation given
in [2]. In particular we have checked that a good agree-
ment with curves L�p� and C�p� [2] can be obtained by
reporting 1�Eglob�p� and Eloc�p�. Of course in such an ex-
ample the short cuts connect at almost no cost vertices that
would otherwise be much farther apart (because �ij � 1
; i fi j). On the other hand, this is not true when we
consider a weighted network. As real networks, we first
consider different examples of natural systems (neural net-
works), and then we turn our attention to man-made com-
munication and transportation systems.

(a) Neural networks.—Thanks to recent experiments,
neural structures can be studied at several levels of scale.
Here we focus first on the analysis of the neuroanatomi-
cal structure of the cerebral cortex, and then on a simple
nervous system at the level of wiring between neurons.
The anatomical connections between cortical areas are of
particular importance for their intricate relationship with
the functional connectivity of the cerebral cortex [18]. We
analyze two databases of cortico-cortical connections in
the macaque and in the cat [19]. Table I indicates that the

TABLE I. Macaque and cat cortico-cortical connections [19].
The macaque database contains N � 69 cortical areas and K �
413 connections [20]. The cat database has N � 55 cortical
areas (including hippocampus, amygdala, entorhinal cortex, and
subiculum) and K � 564 (revised database and cortical parcel-
lation from [21]). The nervous system of C. elegans consists
of N � 282 neurons and K � 2462 links which can be either
synaptic connections or gap junctions [24].

Eglob Eloc

Macaque 0.52 0.70
Cat 0.69 0.83

C. elegans 0.46 0.47

two networks are small worlds [16]: they have high Eglob,
52% and 69% of the efficiency of the ideal graph with an
edge between each pair of vertices (just slightly smaller
than the best possible values of 57% and 70% obtained in
random graphs), and high Eloc, 70% and 83%, i.e., high
fault tolerance [22]. These results indicate that in the neu-
ral cortex each region is intermingled with the others and
grows following a perfect balance between local necessi-
ties (fault tolerance) and wide-scope interactions. Next we
consider the neural network of C. elegans, the only case of
a nervous system completely mapped at the level of neu-
rons and chemical synapses [23]. Table I shows that this
is also a small-world network: C. elegans achieves 50%
of both global and local efficiency. Moreover the value of
Eglob is similar to Eloc. This is a difference from cortex
databases, where fault tolerance is slighty privileged with
respect to global communication.

(b) Communication networks.—We have considered
two of the most important large-scale communication
networks present today: the World Wide Web (WWW)
and the Internet. Table II shows that they have relatively
high values of Eglob (slightly smaller than the best possi-
ble values obtained for random graphs) and Eloc. Despite
the fact that the WWW is a virtual network and the Inter-
net is a physical network, at a global scale they transport
information essentially in the same way (as their Eglob’s
are almost equal). At a local scale, the bigger Eloc in
the WWW case can be explained both by the tendency
in the WWW to create Web communities (where pages
talking about the same subject tend to link to each other)
and by the fact that many pages within the same site are
often quickly connected to each other by some root or
menu page.

(c) Transport networks.—Differently from previous
databases, the Boston subway transportation system

TABLE II. Communication networks. Data on the World Wide
Web from http://www.nd.edu/~networks contains N � 325 729
documents and K � 1 090 108 links [12], while the Internet
database is taken from http://moat.nlanr.net and has N � 6474
nodes and K � 12 572 links.

Eglob Eloc

WWW 0.28 0.36
Internet 0.29 0.26

198701-3 198701-3

Figure 2.4: In an unweighted small world network, increasing the link probability ?, global efficiency
increases, while local efficiency decreases. The small world graph is constructed as a
regular lattice with # = 1000 nodes and node degree : = 20, where each edge is rewired
with probability ?. [LM01, Figure 1]

full network 3( (8, 9) as the reference. One can call it the expectation value of the distance change.
We use a definition as given in [Sze+22]:

�(/# = 〈&(8, 9)〉 =
〈
3( (8, 9)
3# (8, 9)

〉
8≠ 9

(2.6)

&(8, 9) = 3( (8, 9)/3# (8, 9) is called route factor, detour index, stretch, or directness for the node pair
(8, 9) [Bar11; Bar22]. Vragović, Louis, and Díaz-Guilera proposed this modification of efficiency in
the context of informational transfer in complex networks in 2005 [VLD05]. In 2006 Crucitti, Latora,
and Porta used it in the context of urban street networks [CLP06].

2.3.3. Low Traffic Neighborhood (LTN) Coverage

As LTN Coverage we define the fraction of street length that is part of LTNs.

�LTN =
!LTN

!total
=

∑
4∈�LTN

;4∑
4∈� ;4

(2.7)

Here ;4 is the length of edge 4. As our motivation is transforming whole cities into traffic-calmed
areas, a high LTN Coverage is desirable. At the same time, it needs to be below 100% for there to
be space for the sparsified streets.

2.3.4. Betweenness Centrality

Betweenness centrality is a prominent measure of centrality which tries to measure the importance
of a node or edge in a network by counting the number of shortest paths that lead through it. With
the geodesics f(B, C) being the number of shortest paths between nodes B and C, and f(B, C | E) being
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Figure 2.5: Betweenness centrality on street networks, calculated from the dual space. London
(left) and Bejing (right) clearly show higher centrality of orbital and long roads, unlikely
residential [Kir+18, Figure 3].

the number of those paths that go through node E,

�B(E) =
∑
B,C ∈+

f(B, C | E)
f(B, C) (2.8)

defines the betweenness centrality of node E. By convention f(B, B) = 1 and if E ∈ {B, C}, f(B, C | E) = 0.
Edge betweenness centrality is defined analogously

�B(4) =
∑
B,C ∈+

f(B, C | 4)
f(B, C) (2.9)

where the node E is replaced by the edge 4. There are two rescaled variants of betweenness centrality.
Length-scaled betweenness introduces the prefactor 1/3 (B, C) in the summands of Eqs. (2.8) and (2.9),
linearly-scaled betweeness the prefactor 3 (B, E)/3 (B, C). The rationale of length-scaled betweenness is
dampening the effect of long paths, while linearly-scaled betweenness tries to account for the fact
that long paths are more likely to go through nodes that are in the middle of the path. The nearer a
node E to the target C, the more influential it becomes [Bra08].

�� has been shown to be able to capture the hierarchical structure of street networks, especially on
the dual-graph representation, see Fig. 2.5 [Wan15]. We are especially interested in edges with low
betweenness centrality, as they make a good candidate to be residential streets and thus considered
to be inside LTNs.

2.3.5. Spatial Clustering and Anisotropy of High �� Nodes

The distribution of the previously introduced betweenness centrality �� can hint the structure of
relevant streets. Fig. 2.6 shows the distribution of �� for three metropolitan areas. This is a relevant
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(c) Tokyo

Figure 2.6: Distribution of �� for nodes in Paris, Santiago and Tokyo [Wan15, Figure 3].

measure for the resilience of a transport network. The distributed character of Paris, as seen in
Fig. 2.6a, enables it to withstand the loss of relevant nodes, and keeping the traffic in the city center
low. Fig. 2.6b in contrast, shows a more centralized structure, due to its rather sparse network.
Tokyo exhibits a lattice-like structure with roads of high betweenness centrality. High betweenness
centrality nodes are defined through a percentile threshold \ ∈ [0, 1]. The shape of the high ��
node distribution is measured in terms of clustering and anisotropy as follows:

�\ =
1

#\ 〈-〉

#\∑
8=1



G8 − Gcm, \

 (2.10)

# and the average distance to the high �� node center of mass 〈-〉cm, \ normalize this measure for
comparison between networks of different sizes. ‖ . . . ‖ denotes the Euclidean norm. A maximally
distributed, or unclustered network has �\ = 1. In case, the network collapses to a single node
�\ = 0. For Anisotropy, the ratio of the two high �� node eigenvalues _1 and _2 are used:

�\ =
_1

_2
, _1 ≥ _2 (2.11)

A perfectly isotropic network has �\ = 1, like any point symmetric shape or other uniform distribution.
The more anisotropic the network, the higher �\ , diverging to infinity for a line. Both �\ and �\

realize values between the given extremes for real-world networks [Kir+18].

2.3.6. Street Orientation-Order

The order of a street network can be measured using the distribution street segment directionality.
Based on Shannon entropy, the orientation-order q is defined as

q = 1 −
(
�> − �6
�max − �6

)2
, (2.12)

where �> is the observed entropy, �6 is the entropy of a grid network and �max is the maximum
entropy of a network, assumed to be a two-dimensional grid. Numerically, the entropy values are
dependent on the number of bins : used to discretize the distribution. For 36 bins, the maximum
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Figure 2.7: Two examples for the polar distributions of street patterns. Manhattan, NY, USA (left)
has a higher street orientation-order q than Boston, MA, USA (right). Manhattan’s street
network is almost exclusively distributed in four cardinal directions, i.e. two-dimensional,
except for isolated symmetry breaks. Boston, on the other hand, represents one of the
least grid-like cities in the USA. [Boe19b, Figure 3]

entropy is �max = − log
(
36−1

)
≈ 3.5835 nats and the entropy of a grid network where the directions

fall into four bins—one for each cardinal direction—is �6 = − log
(
4−1

)
≈ 1.3863 nats. The orientation-

order q is thus monotonic in �> and bounded between 0 and 1. Fig. 2.7 shows two examples for the
polar distributions of street patterns [Boe19b].

2.3.7. Average Circuity

The average circuity e is the ratio of the network’s total edge length !net and the Euclidean distance
(how the crow flies) between all node pairs !gc. It relates to directness (Eq. (2.6)), in the sense
that the distances between two distance measures are compared. But in this case, we compare edge
lengths to straight-line distances and the summation is done before the division.

e =
!net

!gc
=

∑�
8=1 ;8∑

4={8, 9 }∈� ‖G8 − G 9 ‖
(2.13)

A network with intersections connected by perfectly straight streets has e = 1. The more the network
edges deviate from straight lines, the higher e. For a place with many serpentine roads, e is higher
than for a place with straight roads [Boe19a].
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Results: The structure of superblocks

Classification of morphological types

According to the characteristics of the built form of the Nanjing’s old city, we made a grade division
along four quadrants. Among them, the Con N is divided into 7 levels, the Con A is divided into 7
levels, the Geo A is divided into 9 levels, and the Geo A is divided into 7 levels (Figure 3), the
specific interval points and the number of segments for classification are recorded in the sup-
plemental material. The absolute heterogeneity values of each superblock are calculated and
uniformly normalized to relative heterogeneity values for further comparison and analysis. To sort

Figure 3. Morphological classification of the four dimensions (a) Configuration of network, (b) Configuration
of area, (c) Geometry of network, (d) Geometry of area.

1064 EPB: Urban Analytics and City Science 50(4)

sample superblocks into types that can be identified and described, K-means clustering analysis is
chosen to process relative heterogeneity values from four dimensions.

Samples with zero values in the Con N and Geo N would affect the selection of centers in the
clustering analysis, so they were removed from the clustering and classified as a separate type. On
this basis, the clustering of relative heterogeneity values resulted in six types, which, together with
the previously distinguished type, yielded a total of seven types with different profiles in the
hierarchy matrix diagram (Figure 4). The relative heterogeneity values are roughly divided into
three ranges: low of 0 to 0.4, medium of 0.4 to 0.7, and high of 0.7 to 1.0.

Most members of T1 have medium to high hierarchy in two configuration dimensions. The
grouping statistics show that T1 has the highest street density: all superblocks have a density of
10 km/km2 or more, which is reflected in the high heterogeneity of network configuration. However,
the width and length of the streets within the superblocks tend to be similar, and thus, the

Figure 4. Hierarchical matrix of the seven types of superblocks in Nanjing.

Song and Pang 1065

Figure 2.8: Morphological classification (left) and seven identified block types (right) by Song and
Pang for Nanjing, China. The four dimensions are (a) configuration of network (Con N),
(b) configuration of area (Con A), (c) geometry of network (Geo N), and (d) geometry of
area (Geo A) [SP23, Figure 3].

2.3.8. Hierarchy Matrix

Song and Pang propose a hierarchy matrix to classify types of superblocks, and identify seven
superblock types for the case study of Nanjing, China. It consists of four dimensions: configuration
of network, configuration of area, network connectivity and area connectivity. Configuration of
network uses the network depth as a proxy of connectivity (Fig. 2.8 (a)). They define the depth of
a street as the number of steps of adjacency to the main road. With increasing depth of a street,
its connectivity decreases. Analogously, this means the deeper one is in a neighborhood, the more
difficult it is to reach the main road. Such main roads are being used as a basic date (baseline) to
determine the depth of the other streets. The configuration of the area is based on the (Con N) level
value of the street where the main access is located. This way the level of embeddedness is defined,
see Figure Fig. 2.8 (b). Song, Zhang, and Han study the access structure of plots and streets earlier
in detail [SZH21]. The geometry of the network is based on the width and length of the streets
(Fig. 2.8 (c)). Street length and width are used to describe importance of a street. “The greater the
width and length of a street, the higher its Geo N level, and vice versa.” Finally, building footprints
and residual space are used to determine the geometry of the area (Fig. 2.8 (d)). Urban density is
measured using the floor space index (FSI) and ground space index (GSI). Both are compiled into
one index using a cluster analysis determining the level of the plot. A higher level indicated a denser
area [SP23].
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Figure 3.14 – Indicateur d’orthogonalité calculé sur les arcs du graphe viaire de Paris.
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Figure 3.15 – Indicateur d’orthogonalité calculé sur les voies du graphe viaire de Paris.

85

Figure 2.9: Orthogonality indicator ort. (Fref ) for Paris, France. In this case the operator is applied
to the lanes of the road network, not just the roads [Lag15, Figure 3.15].

2.3.9. Orthogonality

Orthogonality is a measure of the connection angle of a street to its direct neighborhood [Lag15]. It
measures the orthogonal fraction of the connecting streets by summation of the sine values of the
connection’s angles between the reference way and the arcs it intersects.

ort. (Fref ) =
∑
=∈Fref

∑
08∩=∧0 9∉Fref min

(
sin

(
\080 9

) )
/
(
0 9 ∩ =∧ ∈ 0 9 ∈ Fref

)
con. (Fref )

(2.14)

con. (Fref ) =
∑
=∈Fref

Card (0 | [(= ∈ 0) ∧ (0 ∉ Fref )]) (2.15)

In this nomenclature, Fref is the path in question and 0 are the adjacent connections with the
intersection angle \. The orthogonality is normalized by the number of connections, ergo the number
of arcs intersecting the reference way. In their thesis Lagesse focus on the analysis of semantic roads
and historic evolution of the road network [Lag15; ERL22]. Fig. 2.9 shows that the indicator reveals
local structures, but no global, city-wide patterns, but it shows a close relation to the speed limit
of the street. High-speed traffic arteries with flexible connections and old or residential areas are
pronounced [Lag15].

2.3.10. Morphometrics

Furthermore, there are many other approaches trying to measure urban form with various terminology
which would exceed the scope of this thesis [FRP21]. The elements studied go beyond the road
network and analyze buildings, their imprints, building height or the forms enclosed between the
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Figure 2.10: Zipfian plot showing all built-up areas by rank of all cities and municipalities in
Bangladesh. Colors indicate the year of the used satellite imagery [BS20, Figure 8]. If
the distribution followed a Zipfian distribution, the scatter plot would form a straight
line. For all four years, a characteristical deviation at the first three ranks can be
observed, also the slope decreases with rank, the effect Gibrat’s law tries to capture.

streets [LB14; Shp22]. A deciding difference for morphometrics is the focus on built form, in contrast
to the morphology of streets we focus on. Fleischmann, Romice, and Porta identify six categories
of measures: Dimension, Shape, Spatial Distribution, Intensity, Connectivity and Diversity. Using
further indicators, as population, accessibility to parks, restaurants and other amenities, spatial
signatures can be determined at the building lot level, giving policymakers a tool to better grasp
local similarities, or compare across cities. With this technology it is possible to obtain from building
footprints and contextual data a morphometric taxonomy, represented by a dendrogram, able to
uncover meaningful spatial patterns, i.e. the historical city center or different types of residential
housing [AF22]. Dibble et al. also identify a bifurcation in the context of historical changes in urban
trends whose influences can still be measured today [Dib+19]. A similar approach, using Shannon
entropy of 2D matrices, has also been taken on an inter-city level. Cellular configurations were used
to characterize the degree of disorder in various metropolitan areas, reinforcing the hypothesis that
proximity of built form is related to cultural proximity [NBC23].

2.3.11. Rank-Size Distributions

Useful to investigate rank-size rules, the rank-size distribution is able to give a visual queue of the
size distribution of a city. But when including a wider range of cities, the rank-size distribution is
not able to capture the full picture, then a rule of proportionate effect, called Gibrat’s law [Gib31],
can be used to describe the population distribution [Eec04]. Usually applied to the population of
cities, it can also be applied to the area and total street length of cities [Mas+15]. In our case, we
are interested in the distribution of LTN block sizes inside a city for qualitative analysis of the LTN
block size distribution, but no quantitative analysis. A related distribution showing Bangladeshi
built-up areas is shown in Fig. 2.10 [BS20].
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2. Preliminaries 2.3. Network Metrics

As explained, all the above metrics have their own advantages and disadvantages in capturing
the urban form or graph structure, depending on the choice of representation. We will use all of
them, except the hierarchy matrix, orthogonality and morphometrics measures, which could still be
interesting for future extensions, but exceed project scope. For the LTN analysis, we use further
fundamental graph quantities, e.g., the number of edges, nodes, intersections, the node degree, street
length. Especially, approximating population densities for arbitrary LTN is a key measure for urban
planning. Directness and global efficiency serve as key determinants for the performance of city
LTN configuration. LTN coverage reassures the fraction of street length affected of traffic calming
measures, in terms of routing restrictions (Eq. (2.3)), while the betweenness measures can be used
to show the change of street usage, and thus LTN usage, in the city. Clustering and anisotropy
coefficients at the same time give insights into the actually used network shape when LTN restrictions
are applied. The rank-size distribution is used to show the distribution of LTN block sizes inside a
specific city when partitioned. Finally, as street orientation order and average circuity are deeply
intertwined measures of city graph geometry, they are calculated to see if especially oriented or
curved streets facilitate or complicate the use of LTNs.
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Our need for nature, and our need for sociability and culture, can be
served all together if we let them. Cities should be the conservation
sites of the twenty-first century. They are ecosystems deserving of our
protection and nurture. Miracles happen on our doorsteps.

— Ben Wilson [Wil23]



3. Methods 3.1. Data Sources

3. Methods

First, we describe the data sources used in this study. Namely OSM, the GHS population spatial
raster dataset multitemporal (1975-2030) (GHS-POP R2023A), and the cities analyzed in this study.
Second, we describe the sparsification of the road network, the practices of how to partition a road
network into LTNs and the sparse graph �sp. Third, we overview the framework produced for this
study, give a short example of its usage, and highlight relevant implementation details. Finally, in
Section 3.4, we describe the experiments conducted in this study, before we present the results in
Section 4.

3.1. Data Sources

In the following, we describe the data sources used in this study. Our intention is to use as few data
sources as possible, with a coverage as big as possible. This is to ensure reproducibility of the study
and to make it easy to apply the methods to other cities.

3.1.1. Open Street Map (OSM)

The study is based on the Volunteered Geographic Information (VGI) data Open Street Map (OSM)
[Ope23]. As OSM spans the whole world, we can analyze cities from all over the world, which we
posed as a requirement for this study. OSM is a collaborative project to create a free and open map
of the world, but it is not only used and mapped by volunteers, also regional governments and other
groups of interest take part. Especially, large parts of the road network have been imported from
governmental data [ZHN13]. OSM data are widely used in research [Jok+15] and data quality has
been assessed extensively. Building footprint data quality varies across countries, but the street data
are much more reliable [BCL23]. The OSM car road network has been widely used and the data
quality well studied [Fon+17]. To such extent that every urban region in the world has been studied
using OSM, with some of the metrics we use in the present study [Boe22]. In some instances, e.g.,
bicycle related data, it has an even better quality than the official data [VVS23; HZN15]. OSM is
also used in citizen science projects, where volunteers can contribute with the Open Street Map
surveyor app StreetComplete in a gamified way [ZC]. As mentioned before, osmnx implements the
interface to OSM, to download and preprocess the data [Boe17].

3.1.2. Set of Cities

There are two lists of cities used in this study. The first list is 100 cities, distributed across all
continents (except Antarctica), which have been used in a study by Boeing [Boe19b]. The global
distribution of the cities is shown in Figure 3.1. This set of cities includes a large variety of geographic
and demographic characteristics. By analyzing the cities in this set, our approaches are be exposed to
a wide range of different conditions. The general characteristics are first summarized in Section 4.1.
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3. Methods 3.1. Data Sources

Locations of the 100 cities of Boeing (2019)

Figure 3.1: Distribution of the 100 cities as used in the study by Boeing [Boe19b].

The second list consists of the 80 most populated German cities, as of the 2021 census [Sta22]. These
80 cities are all Großstädte (literally: big cities), which are defined as cities with more than 100 000

inhabitants. In 3.2 the distribution of the cities is shown. This set of cities is a supplement to the
first set, with cities lighter in size.

3.1.3. Population Counts — GHS-POP R2023A

The Joint Research Centre (JRC) is an institution under the European Commission (EC) and provides
independent knowledge and scientific services to the European Union. One of the commissioned
projects is the Global Human Settlement Layer (GHSL) dataset, which is a global raster dataset
of several characteristics. It centers around a dataset of built-up areas (GHS-BUILT-S), based
on satellite imagery, used to infer a variety of other datasets [PP23]. Regularly, new releases of
the dataset are published, which improve the quality of the data. One of those datasets is the
GHS-POP R2023A population dataset. The dataset consists of a population raster, with a resolution
of 100m x 100m, and a population count for each cell. Mollweide projection is used, with the origin
at the equator and the prime meridian, which means the cells are not square, but the area of the
cells is invariant. Each updated GHS-POP R2023A release updates the population raster for several
epochs, starting in 1975 with an 5 year interval up until 2030. For our study, we use the 2025
epoch. Furthermore, there are other resolutions available, 1 km and 3′′ or 30′′ in WGS 84 projection,
which is an earth-centered, earth-fixed coordinate system [SFM23]. For our application, the 100m x
100m raster is the most suitable, as it is the highest resolution available, which is needed to detect
variations at LTN level.

Satellite and census data are both used to infer the population raster, but still raw census data
are inherently more accurate than the inferred population raster. Nonetheless, the resolution of
the raster is much higher than census data, as administrative units usually bound the areas of
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Locations of the 80 largest cities in Germany (2022)

Figure 3.2: Map of the 80 most populated German cities by 2021 census [Sta22]. The East-West
divide is visible in the distribution of the cities, with the Rhine-Ruhr area being the
significantly more populated area in the West.

consideration which can be much larger than the 100m raster cells. To make sure the data quality
of the GHS-POP R2023A dataset is sufficient for our application, we estimate the uncertainty of
the data. The GHSL datasheet does not give an explicit error estimation for the population values.
However, it gives expected errors of the new GHS-BUILT-S R2023A release at 10m for the various
area types, see Table 6 in the report [PP23]. For the urban and built-up areas the root mean square
error (RMSE) is 29.6% and the mean absolute percentage error (MAPE) is 21.8%. Because the
population data are inferred from this data, we assume the error is of the same magnitude. As
the used GHS-POP R2023A data compiles down to a lower resolution than the original built-up
data, we estimate the error for our 100m x 100m cells is lower, or at least bounded by the error of
the original data. For each population cell, we estimate the uncertainty by a symmetric triangle
distribution of the width ? ·MAPEurban, where ? is the population of each raster cell. From this we
get a standard deviation of D(?) = 6−1/2? ·MAPEurban [KV04].

For Poland and Portugal case studies Calka and Bielecka estimate MAPEs from 1.0% to 5.71%

for the 250m resolution of the 2019 data [CB20], while Kuffer et al. stress that overestimation
in low-density or sparsely populated outskirts of cities can be even bigger. Underestimation can
happen for high-density residential areas. Crucial is also, there is no one accepted standard for the
uncertainty estimation of population data [Kuf+22; Ley+18]. This means while our population
estimates are not perfect, still we can expect them to show differences between the LTN estimates.

In our calculation we do not need to keep track of a separate numerical uncertainty estimate, as
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3. Methods 3.2. Road Network Sparsification

the mathematical operations we do are only additive and multiplicative. For the cell area �8 we do
not add an uncertainty. Due to this choice, the final uncertainty estimate of each LTNs aggregated
population density dLTN has a standard deviation

D(dLTN) =

√√√
#∑
8=1

(
D(?8)
�8

)2
=
dLTN ·MAPEurban√

6
, (3.1)

where # is the number of cells in the LTN, and �8 is the area of the 8-th cell. The same holds true if
a LTN partially intersects cells, then population ?8 and area �8 are linearly scaled.

3.2. Road Network Sparsification

Task is to partition arbitrary street network graphs � into subgraphs �8 and the sparse graph �sp

holding the given restrictions Eq. (2.3). We do this twofold: one approach depending on the street
attribute highway and one depending on the betweenness centrality of the streets. One simplification
we lay out beforehand is the important distinction that for our purposes we search solutions where
none of the subgraphs �8 are connected to each other. If this is the case, it is sufficient to find the
sparse graph �sp and the subgraphs �8 fall out of it as the connected components of � \ �sp. This
works because the subgraphs �8 are not allowed to be connected to each other, so they are not
allowed to share any edges. The procedure for this common step is shown in Algorithm 1.

Algorithm 1 Partitions from Sparse Graph
Require: � = (+, �), �sp = (+sp, �sp)
Ensure: �8 = (+8 , �8), �sp = (+sp, �sp)
1: � ← scc(�sp) ⊲ scc: strongly connected components
2: �sp ← argmax2∈� |2 | ⊲ select largest component
3: � ← � \ �sp ⊲ cut off residuals
4: �8 ← wcc(�) ⊲ wcc: weakly connected components

The highway tag describes common use and importance of a street. One possible value is residential
which is used for streets in residential areas. All streets that do not have this tag will be considered
as non-residential, they are included in the sparse graph �sp. The pseudo-code for this approach
is shown in Algorithm 2.

Because tagging of streets is not always consistent, even the proportion of residential streets can
vary between different cities, we also want to have a more general approach. We use the betweenness
centrality of the streets, defined in Eq. (2.9), to determine their importance. As rule of thumb, the
higher the betweenness centrality of a street, the more important it is for the connectivity of the
graph. Residential areas should have a lower betweenness centrality than the rest of the graph. This
also means that when implementing such LTN configuration, the status quo will not be changed, as
streets more important for the connectivity will be kept and only the less important ones will be
calmed down. The pseudo-code for this approach is shown in Algorithm 3. First, the betweenness
centrality of all edges is calculated. Then, the edges are sorted by their betweenness centrality,
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3. Methods 3.3. Implementation: superblockify

Algorithm 2 Residential Partitioner
Require: � = (+, �)
Ensure: �8 = (+8 , �8), �sp = (+sp, �sp)
1: �sp ← ∅
2: for 4 ∈ � do ⊲ loop over all edges
3: if residential ∉ 4.highway then ⊲ check if residential is in highway tag
4: �sp ← �sp ∪ {4} ⊲ add edge to sparse graph
5: end if
6: end for
7: �sp ← (nodes(�sp), �sp)
8: Partitions from Sparse Graph(�,�sp)

so the edges with the highest betweenness centrality are at the beginning of the list. Edges with
betweenness centrality above than a given threshold percentile ? are added to the sparse graph �sp.
A is the maximum path length included in the betweenness centrality calculation. For A = ∞, all
paths are included. Another parameter Algorithm 3 takes is the type C of betweenness centrality to
use. For simplicity, we only use the unscaled, normal betweenness centrality.

Algorithm 3 Betweenness Partitioner
Require: � = (+, �), C ∈ [normal, length, linear], ? ∈ [0, 1] A ∈ [0,∞)
Ensure: �8 = (+8 , �8), �sp = (+sp, �sp)
1: �sp ← ∅
2: 1 ← betweenness(�, C, A) ⊲ betweenness: Eq. (2.9)
3: �sorted ← sort(�, 1, C) ⊲ sort edges by betweenness centrality
4: 1p ← percentile(�sorted, ?) ⊲ minimum betweenness centrality for percentile ?
5: �sp ← {4 ∈ �sorted | 1(4) ≥ 1p} ⊲ select edges with high �� edges
6: �sp ← (nodes(�sp), �sp)
7: Partitions from Sparse Graph(�,�sp)

3.3. Implementation: superblockify

For this study, we developed the superblockify package in Python, available on GitHub �

cbueth/Superblockify [Büt23]. The package provides a set of functions to calculate the superblocks
of a street network, analyze all the metrics presented in this work and more, simplified visualization
functions, and a GeoPackage export function to be used in GIS software for interactive analysis and
urban planning. No additional download is necessary, as the package automatically downloads and
caches all the required OSM and GHS-POP R2023A data of the study areas. The code uses Python
3.10, is linted with black [Łc], and tested with pytest [Kre+04] having a test coverage of 100%.

Central code dependencies are the osmnx [Boe17] and networkx [HSS08] packages for network analysis,
and the geopandas [Bos+23] package for spatial analysis. Runtime relevant code is JIT compiled
using numba [Lam+23] for performance reasons. numba uses the LLVM compiler infrastructure to
translate Python code into optimized machine code at runtime [LA04]. Simple, repetitive, and
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3. Methods 3.3. Implementation: superblockify

1 """New Partitioning Approach"""
2 from .attribute import AttributePartitioner
3

4 class NewPartitioner(AttributePartitioner):
5 """Documentation..."""
6

7 def write_attribute(self, ⁎args, ⁎⁎kwargs):
8 """Description..."""
9 self.attribute_label = "new_descriptive_label"

10 set_edge_attributes(
11 self.graph, # graph given by parent class
12 {
13 (u, v, k): True # Write True to edge to include in sparse graph
14 if my_deciding_condition(u, v, k, data)
15 else False
16 for u, v, k, data in self.graph.edges(keys=True, data=True)
17 },
18 name=self.attribute_label,
19 )

Listing 1: Extending the superblockify package by adding a new partitioning approach. Any
Python functionality can be used to define the sparse graph �sp.

computationally intensive code is thus executed at speeds comparable to C or Fortran, without
sacrificing the flexibility of Python.

The design philosophy of the package is mainly object-oriented, with a focus on modularity and
extensibility. A central characteristic of the package is inheritance, this way, the user can easily add
further partitioning approaches. A child class of the BasePartitioner class only needs to define
the abstract method partition_graph to partition the graph into LTNs, set �sp and the LTNs �8.
Calculating metrics, plots, saving, loading, and exporting are handled by the parent class. Another
useful function is the partition check before calculating metrics. If any of the partition requirements
from Section 2.2 are not met, the user is notified in the program log or console, and reports the
violated requirement. An even simpler approach to adding a new partitioning approach is to use
the meta-class AttributePartitioner and only overwrite the abstract write_attribute method.
In this case, the user only needs to define the sparse graph �sp by assigning each edge an attribute.
An example of this is shown in Listing 1. The parent class then takes care of the LTNs, as described
in Algorithm 1.

3.3.1. Example Usage — Nancy, France

A minimal working example is only as short as seven lines of code, as shown in Listing 2. It partitions
the city of Nancy, France into superblocks using the residential street tags, and saves the resulting
LTNs as a GeoPackage file and key metrics as a human-readable YAML file all to a dedicated folder.
Population density is determined for every LTN and the aforementioned metrics are calculated.
Further details on the usage of the package are provided in the documentation available online
[Büt23].
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1 import superblockify as sb
2 part = sb.ResidentialPartitioner(
3 name="Nancy_test", city_name="Nancy", search_str="Nancy, France"
4 )
5 part.run(calculate_metrics=True, make_plots=True)
6 part.save(key_figures=True)
7 sb.save_to_gpkg(part, save_path=None)

Listing 2: Minimal working example of the superblockify package to partition the city of Nancy,
France into superblocks using the residential street tags. To change to the approach using
the betweenness centrality ��, the only change necessary is replacing the constructor
call with sb.BetweennessPartitioner(...), or the new approach from Listing 1 with
sb.NewPartitioner(...).

This example produces the results shown in Fig. 3.3. Each LTN is colored in an own color in Fig. 3.3a,
marked by a larger dot, so small and similar colored LTNs can be distinguished. The black lines
symbolize the sparse street network. The component rank-size distribution in Fig. 3.3b shows the
LTN size distribution by accumulating the street length of each LTN in descending order. If one only
wants to create the superblocks but not calculate the metrics, the calculate_metrics parameter
can be set to False. Then only Figs. 3.3a and 3.3b are produced. When looking into the key figures
file, one can see the general stats of the city graph, e.g., number of nodes = = 1379, number of edges
< = 1997, the total area � = 1.496 × 107m2, total street length2 ! = 1.841 × 105m, average circuity
e = 1.034, street orientation order q = 0.196, and more. These statistics are also saved for every
LTN. Finally, accumulated performance metrics are given. For this example, the LTN Coverage3

is 61.1%, directness � is 96.3%, global efficiency �glob is 96.4%, and the high betweenness nodes
distribution characterized by the clustering coefficient �\ is 0.823 and the anisotropy �\ is 2.876.
We use a percentile characterizing high �� nodes set to \ = 90%, which is parametrized in the central
configuration file of the package. To summarize, converting all residential streets of Nancy into
superblocks, which is 61.1% by length, the increase in travel time for motorized private transport
can be expected to be only 3.7% on average. �glob shows that the efficiency is predicted to change
similarly little.

3.3.2. Calculation of Metrics

This section touches on a few deciding aspects of the implementation details. All the following
methods and more are illustrated in detail online as interactive code notebooks in the Reference
Section4 of the documentation.

2While total edge length counts every length of the directed graph, the total street length ! takes the undirected
graph into account.

3The LTN Coverage is calculated on the directed graph, by edge length.
4https://cbueth.github.io/Superblockify/guide/
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(a) LTNs of Nancy, France using the residential street
tags through Algorithm 2.
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(b) Component rank-size distribution of the su-
perblocks. For each LTN the street length sum
is calculated and sorted in descending order. For
clarity and easier comparison, we only plot the
component size logarithmically, but the rank is
still linear.
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Figure 3.3: Partitioning of Nancy, France into LTNs using the residential street tags. The shortest
paths are determined using the travel time metric. A part of the historical city center
has the highest travel time increase, this is due to partial traffic calming of one way
streets on the connecting sparse street network.
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Restricted Distance Calculation Directness �, global efficiency �glob, and betweenness �� are
calculated using the shortest paths on the unrestricted street network � and the restricted one.
Directness and global efficiency only need the distances, while for betweenness the paths themselves
are needed. Finding all shortest paths on a graph is a well-known problem in graph theory. Depending
on the graph structure, different algorithms are more efficient. We use Dijkstra’s algorithm with a
Fibonacci heap, which has a runtime of O(|� | + |+ | log |+ |). This works well for the street networks
we are dealing with, as the number of edges scales roughly linearly with the number of nodes (see
for our cities Fig. A.7), and not quadratically as in a complete graph. For the complete, unrestricted
graph distance 3(, we can use a simple cythonized implementation of Dijkstra’s algorithm from one
of the dependency packages to obtain all shortest distances and paths. In the case of the restricted
graph �sp, we need to construct the distances and paths ourselves. If one naively calculated the
distances for each combination of LTNs separately, this would scale quadratically with the number of
LTNs and produce a lot of redundant calculations for the sparse subgraph. Instead, we can use the
fact that the shortest path between two nodes in a subgraph is a subset of the shortest path between
the same two nodes in the original graph. In other words, it is possible to construct a bare-bones
version of the restricted graph, where the nodes in �sp function as intermediate nodes between the
nodes in �8. The proposed solution to determine 3# and the paths comes down to two Dijkstra
passes. One pass to dertermine all distances from all nodes in �8 to all nodes in �sp (see Fig. 3.4a),
and one pass to determine all distances from all nodes in �sp to all nodes in �8 (see Fig. 3.4b). The
final step is to find the shortest paths between all +8 and + 9 , which only scales with the number of
nodes intersecting the boundaries +8 ∩+sp or + 9 ∩+sp.

38 9 = min
:=∈+sp∪+= ,;<∈+sp∪+<

(
38: + 3:; + 3; 9

)
, 8 ∈ += ⇔ 9 ∈ +< (3.2)

An implementation can search over either := ∈ +sp∪+= or ;< ∈ +sp∪+<, as we already know 38: + 3:;
from from the first, and 3:; + 3; 9 from the second pass. In the same time all shortest distances inside
�sp are found, and all shortest distances inside �8 or departing to the sparse graph and returning to
�8.

This distance calculation works regardless of the chosen weight for the edges. In other words, the
shortest path can be calculated either using the geographical distance, the travel time, number of
steps, or any other metric. The third distance metric we introduce is travel time with modified speed
limits. This speed limit can be set in the configuration file. By default, a speed limit of 15.0 km/h is
used for the LTNs, and 50.0 km/h for the rest of the street network.

Betweenness Centrality Betweenness centrality �� is part of most network analysis toolkits. But
we found no library that can work with predefined paths. Most implementations use Dijsktra’s
algorithm under the hood. For the application to only save betweenness centrality and with enough
processing power, this is a viable option even for large graphs. Another escape is the limitation
through a maximum path length. But in our case, this is not an option. This is why we took
the implementation of betweenness centrality from the NetworkX library and modified it to work
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(b) Edges leading out of �sp filtered out.

Figure 3.4: Visualization of the two distance calculation passes for a toy graph. The colored nodes
constitute the �8, while the black nodes are the sparse subgraph �sp.

with predefined paths. This had simplification benefits, and we optimized the code to work with
numba while calculating all six types of betweenness centrality (edge and node, with the three scaling
options) in one pass. The main idea of effective �� calculation comes from Brandes [Bra08], stating
“the cubic number of pair-wise dependencies X(B, C | E) = f(B, C | E)/f(B, C) can be aggregated without
computing all of the explicitly.” To not iterate over all possible paths, the algorithm accumulates the
number of shortest paths along all paths to a node, in the form of a dependency tree of one-sided
dependencies X(B | E) = ∑

C ∈+ X(B, C | E).

In our case we are interested in the change of betweenness centrality �� for the street network. Ergo,
we need to determine the betweenness centrality �� two times, for the street network before and
after the introduction of LTNs. To illustrate the difference, we show the node and edge betweenness
centrality �� for the toy graph from before in Fig. 3.5. For larger node �� values, the node is drawn
larger. The edge �� values are shown as the color of the edge, with darker edges having a higher ��
value. When comparing the two figures Figs. 3.5a and 3.5b, the introduction of restrictions has a
significant impact on the distribution of betweenness centrality ��. Before, shortest paths could
shortcut through the LTNs, but after the introduction of restrictions, the shortest paths have to go
around the LTNs, and the sparse subgraph (black nodes) increases in importance.

Street Population Density For each LTN, we want to calculate the population density for arbitrary
geographical areas. To accomplish this task in a manner that can be scaled up to large areas, we
propose to precalculate the population density for each street segment. By doing so, only one
expensive calculation is needed to split up the population onto the streets, and doing this step only
once in the graph preparation before caching the graph, lets us save time and resources when trying
out different LTN configurations.

As we have the GHS-POP R2023A population raster data, it is our task to redistribute the population
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(a) Without restrictions. (b) With restrictions, combined paths from Fig. 3.4.

Figure 3.5: Edge and node betweenness centrality �� for the toy graph with and without routing
restrictions.

of the 2d raster onto all the streets while conserving the total population. The first step is to find a
tessellation of the streets. A tesselation is a division of a plane into polygons, in our case, the plane is
the street network, and each street corresponds to a polygon. The idea is to construct polygons that
include all points in space that are closer to a street than to any other street. There is a solution
satisfying our requirements. Okabe and Sugihara define the line Network Voronoi Diagram (line
N-VD) [Equation 4.7]. It is basically a Voronoi diagram (also called Thiessen polygons in some
fields) where lines are made up of multiple points instead of only one [OS12]. Araldi and Fusco use
this idea to do geostatistical analysis [AF19]. Fleischmann et al. implement this idea in the momepy

package for building footprints [Fle+20; Fle+23].

In Fig. 3.6, we show the tessellation of the drivable street network of Scheveningen, The Netherlands.
Every street has been interpolated by equidistant points, and a Voronoi diagram has been constructed,
see Fig. 3.6a. The polygons are then dissolved to the street level, see Fig. 3.6b.

In Fig. 3.7, we show the population raster and the corresponding population cells for Scheveningen,
The Netherlands. The 10 000m2 large population cells each have a population density value assigned
to them counting the number of inhabitants inside the cell. To map the population to our street
tessellation there are two approaches. Classically, one would use a rasterstats approach, the street
geometries “collect” the population values of all the cells they intersect, but by their center points.
This approach works well if the raster resolution is sufficiently high, but it is not very accurate for low
resolutions, as the population is not distributed evenly across the cells. To keep the approximation
as accurate as possible, we use a weighted sum of the intersecting cells, where the weight is the
fraction of the cell area that is inside the street geometry. To find each possibly intersecting paris of
raster cell and street geometry, we use a spatial index shapely.STRtree [Gil+23]. The uncertainty is
taken as described in the GHS-POP R2023A data description of Section 3.1.3. For the cell area, we
do not introduce any uncertainty because it works as a normalization factor after intersecting over it,
and the quantity arises from a synthetic construction. Floating point inaccuracy is not considered to
be a relevant factor, due to the character of the executed operations. A visualization of the input
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(a) Dense edge point voronoi cells before dissolving to street
level.

(b) Dissolved edge cells, colored by
the LTN they belong to using the
ResidentialPartitioner. The light blue
cells belong to the sparse graph in this case.

Figure 3.6: Street tessellation cells of the Scheveningen, The Netherlands drivable street network,
near The Hague.

(a) Raw population raster (inh.) for the extent of
Scheveningen, The Netherlands. As The Nether-
lands is near the meridian, the raster is barely
slanted.

(b) Population density (inh./m2) polygons for each
edge.

Figure 3.7: GHS-POP R2023A population raster and the corresponding population cells for
Scheveningen, The Netherlands.
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Figure 3.8: Comparison of the cell population results from our result to using the rasterstats approach,
for the case study of La Crosse, Wisconsin, USA. The rasterstats approach overestimates
the population density by (32 ± 2)%, using a linear orthogonal distance regression (ODR)
between the two densities for each cell, and 95% CI. Upsampling the rasterstats approach
reduces the overestimation to about (4 ± 1)%, see Fig. A.1.

raster and the resulting population density is shown in Fig. 3.7. Fig. 3.7b is able to reproduce the
population distribution of the input raster in Fig. 3.7a. Interactive maps for another example can be
found in the corresponding notebook and the actual optimized calculation code in the source.

As a comparison, we also use the rasterstats approach to calculate the population density for each
street. The result is shown in Fig. 3.8. We see that the rasterstats approach overestimates the
population density by (32 ± 2)%. This was calculated using a ODR between the two densities for
each cell, respecting the standard deviation of both population densities. A CI of 95% for this linear
ODR is also shown. A possible explanation is that the rasterstats approach counts the population of
the cells double for multiple street geometries, which leads to an overestimation of the population
density. Overestimation shrinks, when we up-sample the raster to a higher resolution, see Fig. A.1.
Up-sampling is a good solution for small areas, but as the number of cells scales with the square of
the resolution, it is not practical for large areas to maintain two large lists of geometries.

3.4. Experiments

Finally, to investigate the behavior of the LTN framework, our approaches, and patterns in the data,
we conduct a series of experiments. We start by describing the general statistics of the analyzed
cities, to get a sense of the data, and to compare the global regions in the set of 100 cities. Then, we
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investigate the behavior of the LTN framework, starting with the simple ResidentialPartitioner,
and the three kinds of distance metrics: geographic distance, travel time, and travel time with
introduced speed limit (15 km/h inside LTNs, 50 km/h outside). The behavior of directness �, global
efficiency �glob, and the high �� node distribution shape are investigated dependent on the LTN
coverage. For the ResidentialPartitioner the parameters percentile ?, and maximal path length A
are varied. Eleven values of ? are chosen, ranging from 50% to 95% in steps between 2.5% to 10%,
and for the radius A we choose 3000m and ∞, i.e., no limit. Some cities only have metropolitan
boundary polygons, due to this and limited memory, the package implements an option to set a
maximum node count =. When preprocessing the street graph, the package will only consider the =
nodes, starting from a representative, central node. This is done by constructing an ego graph by
breadth-first search (BFS). For cities that have been reduced, the city tables in Appendix B show
the graph statistics before and after the reduction. In summary, for the ResidentialPartitioner,
we have 178 distinct cities and three different distance metrics, resulting in 534 experiments. For
the ResidentialPartitioner, we have 178 distinct cities and 11 × 2 = 66 parameter combinations,
resulting in 3916 experiments. That are 4450 experiments in total. To answer the question if there
is a relation of directness � and global efficiency �glob to street orientation order q or average
circuity e, we take all 4450 experiments and plot these values against each other. Scripts used to
conduct the experiments are available in the repository under scripts/analysis/ and HPC (High
Performance Computing) scripts are available under scripts/slurm/. The HPC scripts are batch
scripts compatible with the SLURM workload manager, so several experiments can be run in parallel
on a cluster. For a subset of all experiments, we plot the partitioning maps, and add them in the
separate Appendix C, which can be used as a flipbook—per experiment one page—to get a sense of
the partitioning behavior varying the parameters. Plotting all maps would exceed the scope of the
appendix.
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4. Evaluation

In this section, the results of the application of our framework to the two sets of cities, the 100
global cities of [Boe19b] and the most populous 80 German cities, are presented. We first give
a comprehensive overview including the general characteristics of the street graphs, highlighting
the commonalities and differences between the two sets of cities, and inside the sets. Then we
group the spatial order by global regions and german states, to compare average circuity and street
orientation order. As the first batch of results, we present the results of the residential partitioner,
using different distance metrics, e.g., the geographical distance, the travel time, and the travel
time with speed limits. Dependent on the LTN coverage, we present the performance results and
high betweenness node distribution. Furthermore, LTN area and the three betweenness centrality
scaling types are shortly compared. The second batch of results is the analysis of the betweenness
partitioning approach, analogous and compared to the residential partitioner. Finally, we try to
answer whether LTN partitioning performance is dependent on the spatial order of the underlying
city, before giving the limitations of the study.

4.1. City Overview

Fig. 4.1 and Fig. 4.2 show histograms of the most important metrics for the 100 global cities and the
80 German cities, respectively. The full lists of metrics are given in Tables 3 and 5 in Appendix B.
The cities in the two sets span multiple orders of magnitude in population ?GHSL, area �, and
number of nodes =, edges <, total length !, population density d, and street orientation order q. For
the set of 100 cities, the number of nodes peaks around 15 000 nodes, the number of edges around
30 000 edges, while the area has a wider distribution. For the circuity, most cities have a e from 1.01

to 1.07, with a few outliers reaching up to above 1.15. Street orientation order reaches from nearly 1

down to below 10−2. The wide range of cultural and geographical backgrounds of the cities in the set
of 100 global cities is reflected in the wide range of values for the metrics. The population density
reaches from a few 500 inh./km2, to about 50 000 inh./km2. The variance of population density
spans a wider range than could be possible from the variance of the area or population data alone.

Germany reaches fewer orders of magnitude in population, area, and number of nodes and edges, as
shown in Fig. 4.2, compared to the global cities in Fig. 4.1. Still, the street orientation order spans
from less than 10−2 up to 10−1. Population density d is in the lower half of the range of the global
cities.

For a quick overview of the street graphs, the Pearson correlation coefficients between the metrics are
shown in Fig. 4.3. Immediately clear are the correlations in the upper left corner of the correlation
matrix The number of nodes =, edges <, and intersections5 =int are highly correlated. This linear
connection is shown in two scatter plots in Fig. A.7. The total street length ! also correlates with
this group by 89%. Graph area � and population approximation ?GHSL correlate with this group

5The number of intersections is the number of nodes with degree greater than 2, not counting dead ends.
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Figure 4.1: Histograms of the most important metrics for the 100 global cities. The cities in this
set span multiple continents and countries, as well as multiple orders of mangitude in
sizes population ?GHSL, area �, and number of nodes = and edges <. Except for average
degree :, and average circuity e, the abscissa is logarithmic.

104

Number of nodes n

0

20

Co
un

t

100 101

Total edge length L (106m)

0

20

105 106

Population pGHSL (inh.)

0

20

104

Number of edges m

0

20

Co
un

t

1.04 1.06 1.08 1.10
Average circuity 

0

20

102 103

Area A (km2)

0

20

4.25 4.50 4.75 5.00 5.25
Average degree k

0

20

Co
un

t

10 2 10 1

Street orientation order 

0

10

100

Population density = pGHSL/A (103inh.
km2 )

0

20

General statistic histograms of the 80 German cities

Figure 4.2: Histograms of the most important metrics for the 80 German cities. The cities in this
set are distributed all around Germany, and span fewer orders of mangitude, compared
to the global cities in Fig. 4.1. Still, street orientation oder q span from less than 10−2

to more than 10−1.

40



4. Evaluation 4.1. City Overview

with around 72%. For the German cities, this block is even more pronounced, with correlations of
95% to 100%, seen in the left matrix of Fig. 4.4. The average street length is slightly anticorrelated
with the number of nodes and edges with a correlation coefficient of −21%. This fits the observation
that when the number of nodes and edges increases, the average street length decreases if the total
street length stays constant. For the german cities, this anticorrelation alone vanished, which might
be due to more homogenous data in this set. But in this case, there is a correlation of around
45% between this block and the average streets per node, and an anticorrelation of −38% with the
average circuity. For both sets of cities the average circuity is anticorrelated with the average streets
per node, −54% for the German cities, and −60% for the global cities. This can be explained with
the detail of mapping and the dependence of the circuity on the simplified graph. A graph with
fewer streets per node might have a larger average circuity, compared to a graph that has more detail
with more nodes, where the great circle distance is more similar to the street length, resulting in a
lower average circuity. Finally, the categorical variable of the region shows a correlation of around
44% for the upper left block, in the global cities, but only a slight anticorrelation of around −10%
for the German cities. For the global cities in Fig. 4.3, the region (as seen in Table 3) is given as the
continent. This is one of Asia and Oceania (AO), Europe (EU), Latin America (LatAm), Middle
East and Africa (MEA), or North America (NAM). For the German cities, the region is given as
the state, as seen in Table 5. The higher correlation for the global cities might be due to the larger
differences in mapping styles between continents, compared to the mapping styles between states in
Germany.
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Figure 4.3: Pearson correlation coefficients for graph metrics of both sets of cities. A colorbar
indicates the correlation coefficient from −1 to 1.
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Figure 4.4: Separate Pearson correlation coefficients for graph metrics of the two sets of cities. The left matrix shows the correlation coefficients
for the 100 global cities, the right matrix for the 80 German cities. Differences between the two sets can be seen which cancel out in
the combined matrix in Fig. 4.3.
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The total population of the cities is approximated using the GHS-POP R2023A data set, which
is described in Section 3.1.3. For each global city, population is plotted against the graph area in
Fig. 4.5. The uncertainty of the population approximation is shown as error bars, but is barely
visible behind the data points. For the German cities, the same plot is shown in Fig. 4.6. The black
line shows a ODR fit in log-log space, including the uncertainty of the population approximation.
An error band of two standard deviations is shown as a gray area around the fit. The linear fit
results in a slope of 0.671 ± 0.064 for the global cities, which corresponds to the exponent of a power
law. The exponent for the German cities is steeper, and nearly linear with 1.004 ± 0.085. Find all
absolute values in the appended Tables 3 and 5.

4.2. Urban Spatial Order

For all cities we calculated the average circuity e and the street orientation order q. Some examples
are shown in Fig. 4.7. When comparing the average circuity e for all cities, we see that the cities in
NAM have the lowest average circuity by median, followed by the cities in LatAm, EU, and finally
AO and MEA. By far the highest average circuity is exhibited by the outlier Caracas, Venezuela,
with e over 1.175. Caracas is also shown in the top left of Fig. 4.7. Also in LatAm is Buenos Aires,
Argentina, with the lowest e, also depicted in the top right of the same figure. In Germany, the
lowest average circuity is exhibited by the city of Berlin, with e of 1.04, the highest by the city of
Wolfsburg, with e of 1.10, both shown in the middle row of Fig. 4.7. Generally, the German circuity
falls into the 1.5 interquartile range of the EU circuity boxplot. For the street orientation order
q (see Fig. 4.9), immediately obvious is the relatively high median of about 0.46 for NAM, which
is still higher than the most ordered city outlier outside NAM: Kyoto, Japan, with q of less than
0.4. By median, AO has the next highest street orientation order q of nearyl 0.1, followed by MEA,
EU, and lowest LatAm. Buenos Aires, Argentina, has the highest street orientation order q of all
cities in LatAm. Both the low average circuity e and the high street orientation order q of Buenos
Aires are due to its grid-like street network. The same can be seen for Beirut, Lebanon, in MEA.
The opposite is the case for Berlin, Germany. While it exhibits the lowest average circuity e of all
German cities, it also has a relatively low street orientation order q of about 0.12. Reasons for this
can be suspected in Fig. 4.7, where the street network of Berlin is shown. Clear straight streets are
prominent and many right angles, but also many defects in the grid can be seen. In the example,
the street orientation order is with 0.326 higher than the city wide average of 0.12. This means the
rest of the city exhibits even less order.

4.3. Residential Partitioner

With the residential partitioner, we tested with 534 configurations the three distance metrics,
geographical distance, travel time, and travel time with slowed LTNs. Fig. 4.10 shows the results of
the different distance metrics. For each distance metric, a boxplot is shown for directness �, global
efficiency �glob, high �� anisotropy �\ , and high �� clustering �\ . The results for the distance and
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Figure 4.6: German cities from Fig. 4.5 plotted in more detail.
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Figure 4.7: Six selected street graph examples of 1000m×1200m, and the street direction distribution.
Average circuity e and street orientation order q are calculated for exactly the shown area.
The first row shows the two extremes of e in LatAm, the second one inside Germany, and
the third one in NAM. The examples also show great variance in the street orientation
order q.
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Figure 4.8: Boxplots of the average circuity e for all cities in the five regions (left), and for the 80
German cities (right). The regions and states are sorted by the median of the average
circuity e.
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Figure 4.9: Boxplots of the street orientation order q for all cities in the five regions (left), and for
the 80 German cities (right). The regions and states are sorted the same as in Fig. 4.8,
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Figure 4.10: Comparison of the different distance metric configurations using the Residential Parti-
tioner. Directness, Global Efficiency, High �� Anisotropy and High �� Clusttering.
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travel time with unchanged speed limits are all under 1 for the performance measures � and �glob,
but above 90%, except of one outlier. This means that the increase in travel distance and travel
time is not higher than 10%. When changing the speed limits, the results scatter much wider by
the 1.5 interquartile range of 20%. There are also cases of over 100%. This is possible for places
where the speed limit is already low, or the higher speed network is normally capped by a lower
speed limit. For specific cities and point-wise application, the distance metric by travel time with
changed speed limits might be useful, but for the global application, we cannot generalize, as the
speed limits are not consistent across the globe. Another way to implement a similar feature could
be to scale the existing speed limits, possible for future work. Due to this, we only compare the
geographical distance and travel time metrics with unchanged speed limits in the following. For the
high �� shape, we can observe that the distance metric results in a slightly higher �\ and lower �\ .
When using the distance metric, the geographical shortest paths tend do be spatially more centered,
resulting in a more compact shape. Travel time paths are more likely to follow the road network,
resulting in a less compact and isotropic shape.

As every city has different proportions of residential streets, we compare the four aforementioned
performance measures by the LTN coverage. For the two distance metrics, the results are shown in
Fig. 4.11. LTN coverages reach from low 20% to high 80%. Directness and global efficiency behave
qualitatively the same, this can also be seen from their correlation in Fig. A.2. They are 97.5%

correlated with each other. The binned medians are highest around 23%, but as thera are only
very little cities with low LTN coverage, the median is not representative. Up to 65%, the � and
�glob are stable around 99%, before showing a slight decline. For the distance metric, both � and
�glob are 1% to 2% lower than for the travel time metric. This speaks for the travel time metric, as
taking the quickest path regarding slower and faster roads is more realistic than plainly searching
the shortest path. For the anisotropy we cannot observe a clear trend in LTN coverage, neither for
the metrics. Again, as seen in Fig. 4.10, the distance metric results in higher �\ .

The larger the cities are, the more LTN area is available. Fig. 4.12 shows that the LTN do not
just grow with the city area, but they stay roughly the same size absolutely. The fractional LTN
area 0LTN =

�LTN

�city
exhibits a power law with the exponent −1.018 ± 0.025 when using the residential

partitioner approach. If the LTNs would stay exactly the same size, the exponent would be −1. This
value is covered by the uncertainty of the exponent.

For the population densities, we have not found a specific trend related to the total city area �, as
shown in Fig. A.4. Different regions exhibit different characteristical population densities. When
aggregating the population densities of Table 3 by region, we find the following values in Table 1.

Analyzing the betweenness centrality ��, we start by comparing the three types of edge betweenness
centrality in Fig. 4.13. Here we analyze the median values of the aggregated �� of all LTNs in
each city. Then we compare �� before and after restricting the LTN to the residential streets. We
will concentrate on the edge betweenness centrality, as the node betweenness centrality behaves
analogously, and the edge �� is more interesting for the LTN finding procedure. The linear scaled
edge �� seems to show an offset of about a magnitude in size for the geographical distance metric.
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Figure 4.11: Directness �, Global Efficiency �glob, High �� Anisotropy �\ , and High �� Clusttering
�\ by LTN coverage, using the distance metric (blue) and travel time metric (orange).
Scatter plot with overlayed median and 80% CI, binned in 10% LTN coverage bins.
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Figure 4.12: The fractional LTN area 0LTN =
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are shown, but lay on top of each other, as the LTN finding procedure is independent
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Table 1: Overview of the population densities of the cities in Table 3 by region, aggregated for LTNs
found by the residential partitioner approach.

Region Population density [inh./km2] Lower 80% CI Upper 80% CI

MEA 16 089 3952 35 717
AO 15 383 3843 37 195
LatAm 11 525 3981 23 921
EU 9826 2880 20 089
NAM 4170 377 10 215
GER 3350 773 7595

A power law �� might govern dependence between the normal and linear edge. A clearer, nearly
linear dependence is observed for the length scaled edge ��, the exponent for both distance metrics
is nominally identical with 1.024 ± 0.007 for the geographical distance metric and 1.024 ± 0.006 for
the travel time metric.

Comparing �� for each LTN before, and after restricting the LTN to the residential streets, we can
se a clear decrease in �� when restricting passing through residential areas (see Fig. 4.14). When
averaging the effect with a linear fit, we find a decrease of (7 ± 2)% for the geographical distance
metric, and (26 ± 3)% for the travel time metric. This is the general trend, but when comparing this
across the regions, we cannot say that one distance metric is better than the other for all regions.
Generally, inside all LTNs the street usage decreases, except for one outlier, and up to cases of −60%
for cases in NAM, MEA, and EU.

4.4. Betweenness Partitioner

3916 experiments are conducted with the betweenness partitioner. We will analyze the results
analogously to the residential partitioner in the previous section. This time we only use plain travel
time as the distance metric. The betweenness partitioner tries to imitate the residential partitioner by
using the edge betweenness centrality as a proxy. A parameter given to the betweenness partitioner
is the percentile \ inclusion criteria, determining the threshold for the edge betweenness centrality.
But the percentile does not directly translate to the LTN coverage, as the partitioning approach
only uses the largest strongly connected component of these high �� edges. Another parameter is
the maximal path length. The goal of this parameter is to counteract the effect of the high �� edges
being concentrated in the city center.

The directness � of the unbounded approach results in similar outcomes as the residential partitioner,
but is slightly less efficient by �glob (Fig. 4.15). When setting �� range to 3 km, the directness � is
slightly higher with lower 1.5 interquartile range at about 99%, but the global efficiency �glob is
not noticeably better than the residential partitioner. For the high �� node shape, we do not see a
significant change, even between the two path ranges seen in Fig. 4.15.

When splitting the results by LTN coverage, we see a similar, but much rounder distribution of the
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shown.
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Figure 4.15: Performance metric comparison for the betweenness partitioning approach with un-
bounded and 3 km maximal path length.

directness � to the residential partitioner (Fig. 4.16). The median directness � and global efficiency
�glob are larger than the residential partitioner, up til a coverage of 70% and similar until 80%. For
coverage larger than 80%, the performance metrics do not change significantly, but at this high
coverage, the idea of LTNs is more of one like traffic islands, as some LTNs can grow significantly
large. The anisotropy �\ does not change significantly with coverage, neither to the residential
partitioner nor between the two path ranges. But with growing LTN coverage clustering increases,
with the 3 km path range having a slightly lower nominal value, but a wide range 25% of 80% CI.

Again, the correlation between the performance metrics � and �glob is 96.5% (Fig. A.3).

The difference between the percentile and the LTN coverage was mentioned before, and could slightly
be seen in Fig. 4.16. In Fig. 4.17 we plot this effect more clearly. The same parametrized experiments
result in consistently lower LTN coverage when decreasing the maximal path length for the �� range.
This is because the betweenness centrality depends on identifying relevant edges by their inclusion of
many shortest paths. If the range is decreased, the result gets more local and homogeneous, which
in turn leads to less strongly connected components. This is not a problem in itself, but important
to factor in when one wants to use the betweenness partitioner.

To substantiate the claim that the components clump together for especially high LTN coverage, we
plot the number of LTNs by LTN coverage, compared to the residential partitioner. Fig. 4.18 gives
clear insight into the number of LTNs. The distribution is formed like a pyramid, with the lowest
number of LTNs for the lowest and highest LTN coverage. In green, we see the residential partitioner,
with LTN coverage given by the data and maximally 2300 components. In blue, a bunch of range
pruned results below a LTN coverage of 20% clump up. Here the few LTNs are very small, which is
not the aim of the LTN concept. Around 40% LTN coverage, the number of LTNs is highest, still
the coverage can be improved while keeping directness and global efficiency high. With growing
LTN coverage, the number of LTNs decreases again, as the components grow larger. When the
coverage would reach 100%, the number of LTNs would be 1. A compromise between the 3 km and
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Figure 4.16: Histograms of for the betweenness partitioner results with median and 80% CI, binned
in 10% LTN coverage bins like Fig. 4.11. Directness �, global efficiency �glob and high
�� node shape by LTN coverage for the betweenness partitioner. The 3 km maximal
path length is shown in blue, the unbounded approach in orange.

54



4. Evaluation 4.4. Betweenness Partitioner

50.0 60.0 65.0 70.0 75.0 80.0 82.0 85.0 87.0 90.0 95.0
Aimed Percentile

0.0

0.2

0.4

0.6

0.8

1.0

LT
N 

Co
ve

ra
ge

CB Range
3000

Figure 4.17: Aimed and actual LTN coverage for the betweenness partitioner. With decreasing ��
range, the actual LTN coverage decreases.

Table 2: Overview of the population densities of the cities in Table 3 by region, aggregated for LTNs
found by the betweenness partitioner.

Region Population density [inh./km2] Lower 80% CI Upper 80% CI

MEA 15 672 2874 34 955
AO 14 182 3179 35 369
LatAm 11 354 2976 25 140
EU 9070 2056 19 930
NAM 3546 121 9777
GER 3567 679 7916

∞ maximal path length, one could select a higher �� range. This way higher LTN coverage can be
achieved, while avoiding high �� clustering.

The relative LTN size compared to the total area is shown in Fig. 4.19. Here both �� ranges split
up, confirming that introducing a maximal path length results in smaller LTNs. The scaling is again
governed by a power law exponent. For the 3 km maximal path length, the exponent is −1.20 ± 0.02,
for the unbounded approach −1.10 ± 0.02. To sum up, the residential partitioner has an exponent of
−1.018 ± 0.025, which means the betweenness approach generally results in smaller LTNs.

For the population densities, aggregated over the LTN population densities created by the betweenness
partitioner, we find distributions similar to using residential partitioner, see Fig. A.5. The population
might overlap by the 80% CI, but the betweenness partitioner approach generally results in slightly
lower population densities. All nominal values, except for GER, are each about 10% lower than the
residential partitioner from Table 1.
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Figure 4.20: Comparison of the edge betweenness centrality types for the betweenness partitioner
with the maximal path length set to 3 km and unbounded. The left scatter plot shows
the normal, un-scaled edge �� and the linealy scaled edge ��. The right scatter plot
shows the normal, un-scaled edge �� and the length scaled edge ��, additionally two
ODR fits with uncertainties are shown.

The connection between the length scaled edge betweenness gets clearer. The exponent using
the maximal path length of 3 km is 1.089 ± 0.004, for the unbounded approach 1.089 ± 0.003. To
visualize this, a linear fit is shown in Fig. 4.20. Linerly scaled �� values still show no clear connection
to the normal �� values for this construction of LTNs, and the resulting shortest paths.

By comparison of the linear fit, the average decrease of betweenness centrality to introducing the LTN
restrictions are (33 ± 1)% for the maximal path length of 3 km, and (39 ± 1)% for the unbounded
approach. This is a slightly larger improvement than the residential partitioner, which had an
average decrease of (26 ± 3)%. In Fig. 4.21 we also show the averaged percentual change of edge
betweenness in the LTNs by region and distance metric. Compared to the residential approach, there
are more outliers of the boxplots. This might be due to the boundary cases introduced through the
varied percentile ? and �� range, which was highlighted in the pyramid-like distribution of number
of LTNs in Fig. 4.18. But generally, the unbounded approach results in a larger median decrease of
betweenness centrality across all regions.

One central question of this thesis is whether LTN partitioning performance is dependent on the
spatial order of the underlying city, namely average circuity e and street orientation order q. The
correlation matrix in Fig. 4.22 shows no clear correlation between the performance metrics � and
�glob and the spatial order of the city. The largest cofficients are found for the residential partitioner
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Figure 4.21: Comparison of the normal edge �� before and after restricting the LTN of the be-
tweenness partitioner (left), and a linear fit with uncertainties for each distance metric.
Averaged percentual change of edge betweenness in the LTNs (right) by region and
distance metric.

and the street orientation order q with 24% for the 100 global cities. The correlation is still weak,
and from the actual distributions in Fig. 4.23 we can see that the correlation is not monotonic, and
thus probably an artifact of the selection of cities. A full pairwise distribution plot of all metrics
and spatial orders is shown in Fig. A.6.

4.5. Limitations

There are a few, but important limitations to this study. First, the residential partitioner approach
uses the OpenStreetMap tags to identify residential streets. The completeness of the metadata is
not given everywhere, or mapping is not consistent sometimes, and thus the residential partitioner
approach is not applicable everywhere, but large cities are usually well mapped. But in this case, the
approach using the betweenness centrality is still useful. Second, the circuity measure e is dependent
on the simplification algorithm. As the circuity is defined dependent on the graph representation,
having nodes and edges, the simplification algorithm is decisive for the result. A simplification
algorithm that removes many nodes and edges will result in a higher circuity. Optimally, there would
be a quantity like the circuity that is independent of the simplification algorithm, or even better,
independent of the graph representation. Another factor one should consider is the quality of the
GHS-POP R2023A population dataset. We emphasize that the population density estimate is an
approximation useful to gain insight of the population distribution inside a city and their LTNs. But
it is not a tool to determine exact population densities. For the case of a city that wants to use this
tool to get a first LTN partitioning, they can add more accurate raster data and use this tool without
any problems, as the procedures under the hood are as exact as possible. Then, when calculating
the metrics, we used an all-to-all demand, which is not realistic. To get more exact results, one
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could weight the performance metrics (directness and global efficiency) with a concrete demand.
The same can be done with the missing street capacities. In this study, we treated all streets with
infinite capacity, as the distance metric disregarded any effect of congestion or higher order effects
able to see with traffic modeling including the temporal dimension. Such street capacity can be
integrated by rescaling the distance metric. A short street with small capacity can be rescaled to a
longer street, this way our framework can be used to find LTNs that are more robust to congestion.
Finally, we focused on private motorized traffic, but not everyone uses only the car to get around.
Shared mobility, public transport and active mobility modes are not considered in this study, but
must be included in coherent transport plans.
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Nuestro lema era: “No vueles bajo, crea pensando en una ciudad donde
no hay ninguna norma escrita”. A partir de ahí se abre la creación y
la generación en mayúsculas.

Our motto was: “Don’t aim low. Create for a city where no rules are set in stone”.
This opens up a world of opportunities for creation and generation.

— Moisès Morató [ABÀ21]



5. Conclusion

5. Conclusion

The goal of this thesis was to investigate the potential of LTNs in cities, centered around the drivable
road network. Two research questions were posed:

1. How does the travel time change if all neighborhoods were LTNs?

2. What LTN configuration can we suggest for different types of cities?

To answer these questions, we developed two methods to partition cities into LTNs. In that context,
we mathematically defined requirements for LTNs, introduced a wide variety of relevant graph
metrics, and developed an out-of-the-box solution for the LTN partitioning problem, called �

cbueth/Superblockify. With this tool, city planners can easily partition their city into LTNs and
evaluate the results.

After evaluating the performance of the two partitioning methods on 100 global cities, and additionally,
the largest 80 cities in Germany, we found a median directness � = 97.3% (80% CI from 99.3% to
81.4%), and a median global efficiency �glob = 97.0% (99.1% to 78.8%) for the approach using OSM
residential tagged roads as LTNs. The betweenness-based approach performed slightly better with
a median directness � = 99.4% (99.9% to 97.1%), and a median global efficiency �glob = 98.8%

(99.8% to 96.2%). More specifically, when implementing LTNs where the OSM map data already
has residential roads, the median travel time would increase by only 2.7% (0.7% to 18.6%) for the
representative set of 100 global cities. This increase is if the LTN restrictions are respected by all
road users. This answers question one.

We were able to achieve similar and even better results with the betweenness-based approach, without
using the residential tag. For the actual implementation, this is an advantage if street use can
be changed when implementing LTNs. But the cheaper LTN configurations are returned by the
residential-based approach, as streets do not need to change their use. We were not able to find a
dependency of the results on the spatial order of a city, especially the average circuity e and street
orientation order q showed no correlation with the directness � or global efficiency �glob. Answer
for question two is, that any of the two approaches can be used, depending on the city’s needs
and the available resources. For some configurations of the betweenness-based approach, very large
LTNs can be achieved, similar to large traffic islands. These might be impractical to implement for
some cities, but also have their use in the context of other LTN concepts. In the flipbook appendix
Appendix C, we show the LTN of a few experiments conducted. To get an idea of the partitioning
behavior of the two approaches, we recommend navigating through the flipbook.

One functionality of the tool is to implement speed limits on the LTNs. During the analysis we
discarded this functionality, as it does not return comparable performance results with as little
influence as possible on the status quo. To give an opposing way of thinking, even with a coherent
and dense bicycle network as Amsterdam already has, the city does not stop there. Amsterdam is
implementing a city wide speed limit of 30 km/h which will be in effect by November 2023 [Gem21].
This is a important puzzle piece in many ways. It is not only safer for all road users, mitigates
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5. Conclusion

climate change. This fundamental approach to urban planning is necessary, as the city is expecting
250 000 new residents by 2050 [Jac23]. We also predict that having more LTNs will also increase the
demand for cycling [Fos+23], even if the routes for cycling are not as direct as before, because such
routes might be more pleasant to ride, which is shown to be as important as directness for route
choice [Cho+23]. A possible extension of the tool is to analize each LTN for its included or reachable
amenities. This would be a step towards the “15-minute city” concept [Mor+21; Mor; Alv22], where
all amenities are reachable within 15min by foot or bicycle.
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Figure A.1: Comparison of the cell population results from our result to using the up-sampled
rasterstats approach, for the case study of La Crosse, Wisconsin, USA. Upsampling the
GHSL raster by a factor of 10 in both spatial dimensions reduces the overestimation of
the rasterstats approach.
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Figure A.2: Correlation matrix of the performance metrics and high �� distribution shape for the
residential partitioner. Per se, the performance metrics do not show a clear correlation
with the high �� distribution shape.
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Figure A.3: Correlations between the performance metrics and high �� distribution shape for the
results of the betweenness partitioner. Correlations are qualitatively similar to the
results of the residential partitioner (Fig. A.2).
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Figure A.4: Population density d by the total city area � for each of the 100 global cities. No clear
trend can be observed.
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Figure A.5: Population density d by the total city area � for each of the 80 German cities. No clear
trend can be observed.
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Figure A.6: Pairwise distribution plot of average circuity e and street orientation order q by the performance metrics for the residential and
betweenness approach.
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A. Further Analysis Plots
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Figure A.7: The correlation between number of edges scales linearly with the number of nodes in
both the global and the German list of cities.
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B. Cities

B. Cities

Table 3: Overview of the first 100 city set used in this study, as chosen by [Boe19b]. For each city,
general stats are listed: number of nodes = and number of edges < in the OSM graph,
average node degree :, total edge length !, average circuity e, street orientation order q,
nominal value of the population approximation ?GHSL using [SFM23], city area �, and
population density d. For the reduced graphs, the summarizing statistics are listed under
the respective city, marked with “↩→”.

Region City = < : ! 106m e q ?GHSL (inh.) � (km2) d

(
103inh.
km2

)
AO Bangkok 182 218 394 089 4.33 34.19 1.06 0.092 12 342 851 1643 7.51

↩→ 16 861 34 770 4.12 3.69 1.06 0.093 2 122 987 138 15.31
Beijing 128 781 318 841 4.95 76.99 1.09 .266 24 149 290 16 913 1.43
↩→ 17 414 41 891 4.81 13.99 1.08 0.230 3 431 286 3592 0.96
Hanoi 157 409 387 387 4.92 42.53 1.06 0.004 7 412 688 3349 2.21
↩→ 18 832 46 076 4.89 5.51 1.05 0.026 572 503 416 1.37
Hong Kong 3012 5588 3.71 0.71 1.13 0.012 1 220 949 152 8.01
Jakarta 106 363 252 393 4.75 18.26 1.06 0.171 11 342 187 6589 1.72
↩→ 17 509 39 039 4.46 3.03 1.06 0.188 1 837 297 105 17.36
Kabul 24 800 64 135 5.17 6.47 1.04 0.080 5 656 560 360 15.71
↩→ 19 349 49 349 5.10 4.88 1.04 0.062 4 657 675 188 24.77
Karachi 166 527 468 658 5.63 37.15 1.03 0.068 21 243 358 5827 3.65
↩→ 18 154 48 954 5.39 5.88 1.05 0.272 702 146 646 1.09
Kathmandu 19 269 48 251 5.01 4.98 1.15 0.032 3 008 734 413 7.28
Kyoto 45 341 120 940 5.33 8.26 1.08 0.353 1 270 597 827 1.54
↩→ 19 156 50 394 5.26 3.79 1.09 0.337 519 979 342 1.52
Manila 60 498 154 096 5.09 13.92 1.05 0.032 13 751 861 906 15.17
↩→ 17 881 43 218 4.83 4.56 1.04 0.013 4 570 738 198 23.04
Melbourne 213 130 470 228 4.41 57.66 1.06 0.249 5 378 918 8816 0.61
↩→ 18 483 38 867 4.21 4.73 1.04 0.312 423 726 360 1.18
Mumbai 25 819 60 472 4.68 6.27 1.06 0.088 14 523 039 460 31.56
↩→ 19 194 44 496 4.64 4.71 1.06 0.091 11 792 239 230 51.27
New Delhi 11 423 28 464 4.98 2.43 1.07 0.060 1 203 942 161 7.46
Osaka 49 712 133 235 5.36 8.34 1.03 0.236 2 388 944 288 8.29
↩→ 16 194 40 295 4.98 3.02 1.03 0.180 992 783 103 9.63
Phnom Penh 33 812 86 298 5.10 8.71 1.04 0.309 2 369 492 690 3.43
↩→ 19 128 48 425 5.06 4.92 1.04 0.310 1 410 415 323 4.36
Pyongyang 14 802 35 085 4.74 7.39 1.10 0.013 3 480 278 1867 1.86
Seoul 66 528 187 328 5.63 14.08 1.04 0.009 9 645 141 606 15.91
↩→ 16 187 41 680 5.15 3.72 1.05 0.022 2 189 138 166 13.18
Shanghai 74 750 186 949 5.00 51.68 1.04 0.099 33 924 003 16 475 2.06
↩→ 18 230 42 418 4.65 10.43 1.03 0.111 16 422 248 1005 16.33
Singapore 23 835 45 596 3.83 5.80 1.08 0.005 5 959 450 1717 3.47
↩→ 18 372 34 142 3.72 4.37 1.07 0.006 4 544 117 403 11.26
Sydney 113 802 264 400 4.65 36.84 1.07 0.085 5 100 197 4315 1.18
↩→ 17 692 38 426 4.34 5.76 1.07 0.126 660 591 567 1.16
Taipei 11 985 28 123 4.69 3.34 1.07 0.129 2 542 878 269 9.42
Tokyo 277 025 738 637 5.33 46.73 1.05 0.048 13 453 095 42 188 0.32
↩→ 16 046 39 628 4.94 2.95 1.06 0.044 755 145 92 8.13
Ulaanbaatar 31 833 79 263 4.98 12.68 1.07 0.029 1 876 392 4735 0.40
↩→ 19 307 47 944 4.97 7.22 1.07 0.051 1 453 462 923 1.57

EU Amsterdam 11 817 27 070 4.58 2.61 1.07 0.083 818 407 219 3.73
Athens 8690 17 901 4.12 1.14 1.01 0.070 613 633 38 16.11
Barcelona 13 439 25 229 3.75 2.49 1.05 0.099 2 463 690 146 16.82
Berlin 28 040 73 144 5.22 10.62 1.04 0.011 3 524 738 890 3.96
↩→ 19 050 48 300 5.07 6.84 1.03 0.009 2 656 218 464 5.71
Budapest 24 051 63 171 5.25 7.95 1.03 0.051 1 835 722 525 3.49
↩→ 19 239 50 096 5.21 6.15 1.03 0.055 1 544 233 320 4.81
Copenhagen 7797 19 539 5.01 1.98 1.04 0.027 764 718 100 7.61
Dublin 11 487 26 597 4.63 2.48 1.06 0.026 554 085 118 4.67
Glasgow 16 234 38 201 4.71 3.65 1.08 0.045 582 972 176 3.31
Helsinki 9615 20 827 4.33 2.54 1.06 0.011 640 938 717 0.89
Kiev 9844 23 193 4.71 4.44 1.05 0.017 2 552 854 826 3.09
Lisbon 10 100 20 647 4.09 1.84 1.07 0.020 564 066 86 6.50
London 128 283 299 812 4.67 28.89 1.06 0.015 9 734 682 1595 6.10

Continued on next page
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Table 3: Overview of the first 100 city set used in this study, as chosen by [Boe19b].

Region City = < : ! (106m) e q ?GHSL (inh.) � (km2) d

(
103inh.
km2

)
↩→ 18 558 42 377 4.57 3.38 1.05 0.043 1 670 052 125 13.31
Madrid 30 844 61 149 3.97 6.10 1.05 0.020 3 797 206 604 6.28
↩→ 19 016 36 180 3.81 3.84 1.05 0.022 2 455 449 208 11.75
Moscow 17 311 35 875 4.14 8.05 1.05 0.006 12 023 201 1029 11.68
Munich 14 083 36 387 5.17 4.65 1.04 0.078 1 552 833 310 5.00
Oslo 8245 18 754 4.55 3.00 1.11 0.006 708 820 480 1.48
Paris 9612 18 599 3.87 1.81 1.02 0.012 2 322 862 105 22.06
Prague 21 466 49 395 4.60 5.76 1.06 0.049 1 327 193 495 2.68
↩→ 19 462 44 367 4.56 5.20 1.06 0.052 1 268 356 370 3.42
Reykjavik 5276 10 842 4.11 1.04 1.06 0.058 104 272 244 0.43
Rome 43 079 89 459 4.15 11.20 1.07 0.005 2 706 949 1285 2.10
↩→ 18 903 38 705 4.10 5.24 1.07 0.010 1 052 128 455 2.31
Sarajevo 4362 9783 4.49 1.17 1.10 0.019 196 713 73 2.66
Stockholm 13 710 31 749 4.63 3.52 1.09 0.006 1 022 888 215 4.74
Venice (Mestre) 5922 12 134 4.10 1.33 1.07 0.055 256 643 416 0.62
Vienna 16 090 35 907 4.46 4.53 1.04 0.051 1 932 893 414 4.66
Warsaw 19 262 43 966 4.57 6.02 1.04 0.032 1 849 553 516 3.58

LatAm Bogota 59 687 149 426 5.01 10.98 1.04 0.032 8 899 793 392 22.69
↩→ 18 824 44 024 4.68 3.71 1.04 0.176 3 194 973 131 24.32
Buenos Aires 17 843 37 539 4.21 3.99 1.01 0.147 2 711 340 205 13.20
Caracas 16 456 35 950 4.37 5.72 1.18 0.018 2 668 989 775 3.44
Havana 23 123 62 196 5.38 7.27 1.04 0.031 2 078 137 1944 1.07
↩→ 19 477 52 806 5.42 6.32 1.04 0.032 1 863 787 602 3.09
Lima 144 967 387 549 5.35 32.14 1.05 0.006 10 924 814 2847 3.84
↩→ 18 127 45 384 5.01 4.03 1.04 0.084 1 951 204 169 11.48
Mexico City 125 091 294 838 4.71 24.56 1.05 0.137 7 649 332 1493 5.12
↩→ 17 799 37 052 4.16 3.14 1.03 0.229 1 137 806 132 8.61
Port au Prince 15 218 37 641 4.95 4.77 1.11 0.016 1 481 683 727 2.04
Rio de Janeiro 70 736 171 153 4.84 16.91 1.06 0.014 6 768 933 1201 5.63
↩→ 17 873 42 827 4.79 4.10 1.04 0.017 1 690 587 243 6.94
Sao Paulo 121 498 302 351 4.98 29.37 1.05 0.002 11 858 950 1523 7.79
↩→ 19 100 47 153 4.94 5.31 1.07 0.005 1 565 644 299 5.23

MEA Baghdad 72 520 199 676 5.51 19.04 1.03 0.065 6 338 692 861 7.36
↩→ 16 735 42 286 5.05 4.37 1.04 0.028 2 064 143 181 11.34
Beirut 3765 7445 3.95 0.56 1.02 0.200 354 208 21 16.49
Cairo 134 086 318 976 4.76 24.00 1.05 0.043 9 149 031 3002 3.05
↩→ 17 650 34 148 3.87 6.08 1.07 0.067 344 396 1262 0.27
Cape Town 79 864 204 966 5.13 22.07 1.10 0.024 5 052 916 2454 2.06
↩→ 18 004 44 566 4.95 5.95 1.09 0.052 926 442 646 1.43
Casablanca 35 680 95 143 5.33 6.30 1.04 0.113 3 387 477 214 15.77
↩→ 17 799 45 994 5.17 3.04 1.04 0.077 1 343 586 93 14.33
Damascus 9087 21 521 4.74 2.24 1.07 0.049 2 160 242 116 18.51
Dubai 56 428 114 581 4.06 16.05 1.07 0.028 3 122 371 5905 0.53
↩→ 17 272 32 314 3.74 6.24 1.07 0.017 574 925 1185 0.49
Istanbul 191 502 510 182 5.33 49.28 1.07 0.007 14 243 965 11 281 1.26
↩→ 16 291 37 918 4.66 5.15 1.10 0.005 1 409 086 524 2.68
Jerusalem 8210 16 299 3.97 1.93 1.11 0.009 1 253 649 125 9.97
Johannesburg 81 413 208 226 5.12 25.52 1.09 0.020 6 409 611 1644 3.90
↩→ 17 678 43 513 4.92 5.88 1.07 0.027 1 475 380 358 4.11
Lagos 1591 3676 4.62 0.40 1.06 0.058 119 799 20 5.93
Mogadishu 15 313 49 563 6.47 3.83 1.03 0.282 3 867 823 1259 3.07
Nairobi 37 142 90 543 4.88 9.73 1.07 0.019 5 838 242 729 8.00
↩→ 18 697 44 678 4.78 4.62 1.07 0.020 4 476 584 257 17.40
Tehran 107 288 219 061 4.08 16.27 1.05 0.130 7 294 182 629 11.59
↩→ 18 134 34 834 3.84 2.69 1.04 0.153 1 671 360 101 16.45

NAM Atlanta 12 796 33 391 5.22 5.17 1.07 0.320 517 627 348 1.49
Baltimore 12 590 32 117 5.10 3.82 1.03 0.225 628 695 238 2.64
Boston 10 965 25 154 4.59 2.55 1.04 0.025 613 869 246 2.49
Charlotte 31 864 73 916 4.64 10.74 1.07 0.002 829 529 783 1.06
↩→ 19 108 45 151 4.73 6.87 1.06 0.007 531 272 475 1.12
Chicago 28 662 76 092 5.31 10.39 1.01 0.900 2 640 668 607 4.35
↩→ 19 084 49 787 5.22 6.90 1.01 0.901 1 706 294 367 4.65
Cleveland 8955 24 638 5.50 3.77 1.03 0.481 365 347 213 1.71
Dallas 36 422 92 865 5.10 13.31 1.04 0.308 1 472 292 998 1.47
↩→ 18 454 46 899 5.08 6.49 1.03 0.236 686 120 388 1.77
Denver 17 259 49 360 5.72 6.77 1.03 0.680 675 848 401 1.68
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Table 3: Overview of the first 100 city set used in this study, as chosen by [Boe19b].

Region City = < : ! (106m) e q ?GHSL (inh.) � (km2) d

(
103inh.
km2

)
Detroit 20 793 59 718 5.74 8.41 1.01 0.584 658 243 370 1.78
↩→ 19 660 57 010 5.80 8.05 1.01 0.570 648 677 344 1.88
Honolulu 6312 15 140 4.80 2.11 1.07 0.029 404 124 225 1.79
Houston 63 086 157 686 5.00 21.70 1.04 0.460 2 780 403 1651 1.68
↩→ 16 809 40 159 4.78 5.72 1.03 0.607 692 999 306 2.26
Las Vegas 68 220 160 177 4.70 19.83 1.06 0.616 2 451 129 1381 1.77
↩→ 17 734 41 709 4.70 5.99 1.05 0.689 857 744 348 2.46
Los Angeles 174 591 461 349 5.28 77.18 1.05 0.355 10 131 722 12 294 0.82
↩→ 18 167 45 855 5.05 11.09 1.07 0.399 621 824 2581 0.24
Manhattan 4576 9852 4.31 1.18 1.02 0.662 1 658 451 87 18.99
Miami 8535 22 733 5.33 2.49 1.02 0.740 401 627 143 2.81
Minneapolis 7793 23 678 6.08 3.38 1.02 0.741 375 276 148 2.52
Montreal 25 298 64 796 5.12 8.74 1.07 0.130 1 972 042 625 3.16
↩→ 18 782 46 544 4.96 6.28 1.05 0.216 1 625 328 362 4.48
New Orleans 15 390 40 012 5.20 4.64 1.03 0.131 366 732 912 0.40
Orlando 7573 18 346 4.85 2.58 1.06 0.489 304 166 288 1.05
Philadelphia 24 983 61 623 4.93 6.74 1.03 0.309 1 501 334 368 4.07
↩→ 19 130 46 073 4.82 4.87 1.02 0.347 1 176 093 228 5.15
Phoenix 48 087 123 004 5.12 16.77 1.07 0.594 1 872 464 1346 1.39
↩→ 17 971 46 315 5.15 6.78 1.05 0.718 792 393 390 2.03
Pittsburgh 9822 25 533 5.20 3.27 1.05 0.019 309 714 161 1.92
Portland 20 349 57 325 5.63 6.82 1.04 0.680 685 184 374 1.83
↩→ 19 904 56 248 5.65 6.68 1.04 0.689 671 514 306 2.19
San Francisco 9585 26 649 5.56 3.10 1.03 0.281 823 489 600 1.37
Seattle 19 088 50 335 5.27 5.55 1.03 0.597 710 391 373 1.90
St Louis 8932 24 282 5.44 3.22 1.03 0.270 312 467 171 1.83
Toronto 27 352 73 018 5.34 11.04 1.09 0.479 2 860 231 664 4.30
↩→ 17 916 46 576 5.20 7.32 1.09 0.453 1 925 607 420 4.58
Vancouver 7714 22 864 5.93 2.83 1.02 0.732 693 480 136 5.07
Washington 9992 26 887 5.38 3.24 1.03 0.384 701 524 177 3.96

Table 4: Shorthand names for the regions of the german study cities in Table 5.

Shorthand City

BW Baden-Württemberg
BY Bavaria (Free State)
BE Berlin
BB Brandenburg
HB Bremen (Hanseatic City)
HH Hamburg (Hanseatic City)
HE Hesse
MV Mecklenburg-Western Pomerania
NI Lower Saxony
NW North Rhine-Westphalia
RP Rhineland-Palatinate
SL Saarland
SN Saxony (Free State)
ST Saxony-Anhalt
SH Schleswig-Holstein
TH Thuringia (Free State)
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B. Cities

Table 5: Overview of the 80 most populated German cities (Großstädte as by > 100 000 inhabitants)
by 2021 census [Sta22]. For each city, general stats are listed: number of nodes = and number
of edges < in the OSM graph, average node degree :, total edge length !, average circuity
e, street orientation order q, nominal value of the population approximation ?GHSL using
[SFM23], city area �, and population density d. For the reduced graphs, the summarizing
statistics are listed under the respective city, marked with “↩→”. This only pertains Berlin
and Hamburg.

Reg. City = < : ! 106m e q ?GHSL (inh.) � (km2) d

(
103inh.
km2

)
BW Freiburg im Breis-

gau
3803 8821 4.64 1.14 1.07 0.043 252 070 152 1.65

Heidelberg 2844 6666 4.69 0.82 1.07 0.124 154 854 108 1.42
Heilbronn 2639 6599 5.00 0.79 1.07 0.112 116 836 99 1.17
Karlsruhe 5200 12 410 4.77 1.61 1.07 0.038 321 957 173 1.86
Mannheim 6160 14 423 4.68 1.60 1.07 0.028 331 411 144 2.29
Pforzheim 2845 7068 4.97 0.89 1.07 0.031 114 279 97 1.17
Reutlingen 2659 6696 5.04 0.80 1.08 0.013 121 992 86 1.40
Stuttgart 9128 21 508 4.71 2.61 1.06 0.011 608 298 207 2.94
Ulm 3451 8055 4.67 0.94 1.08 0.025 117 743 118 0.99

BY Augsburg 4778 12 256 5.13 1.40 1.06 0.073 284 132 146 1.94
Erlangen 2674 6491 4.85 0.80 1.07 0.115 126 349 77 1.64
Fürth 2137 5048 4.72 0.66 1.06 0.023 147 272 63 2.33
Ingolstadt 3592 9337 5.20 1.15 1.08 0.046 124 418 133 0.93
Munich 14 083 36 387 5.17 4.65 1.04 0.078 1 552 833 310 5.00
Nuremberg 8061 18 952 4.70 2.24 1.06 0.016 499 332 186 2.67
Regensburg 2873 6761 4.71 0.91 1.06 0.080 151 635 80 1.88
Würzburg 2814 6754 4.80 0.90 1.07 0.017 128 355 87 1.46

BE Berlin 28 040 73 144 5.22 10.62 1.04 0.011 3 524 738 890 3.96
↩→ 19 050 48 300 5.07 6.84 1.03 0.009 2 656 218 464 5.71

BB Potsdam 2682 6638 4.95 0.99 1.07 0.033 197 204 188 1.05
HB Bremen 8847 20 240 4.58 2.91 1.07 0.019 569 530 326 1.75

Bremerhaven 2217 5791 5.22 0.82 1.06 0.086 113 689 93 1.22
HH Hamburg 21 866 52 501 4.80 7.53 1.07 0.019 1 761 088 979 1.80

↩→ 19 841 47 327 4.77 6.71 1.07 0.017 1 635 324 553 2.96
HE Darmstadt 2482 6208 5.00 0.79 1.05 0.134 143 254 121 1.17

Frankfurt am Main 9464 20 104 4.25 2.44 1.06 0.025 821 447 248 3.31
Kassel 3941 9740 4.94 1.23 1.06 0.045 195 841 106 1.84
Offenbach am Main 1582 3861 4.88 0.45 1.04 0.090 109 759 44 2.45
Wiesbaden 4806 11 227 4.67 1.47 1.06 0.017 297 597 203 1.46

NI Braunschweig 5175 12 065 4.66 1.59 1.08 0.084 231 285 192 1.20
Göttingen 2586 5979 4.62 0.73 1.07 0.117 124 678 116 1.07
Hanover (Han-
nover)

7556 18 695 4.95 2.44 1.06 0.061 536 017 203 2.63

Hildesheim 2594 6132 4.73 0.74 1.08 0.050 108 481 92 1.18
Oldenburg 3714 9247 4.98 1.27 1.08 0.016 149 219 103 1.45
Osnabrück 3790 9125 4.82 1.33 1.06 0.009 148 963 119 1.24
Salzgitter 2693 6308 4.68 1.06 1.08 0.034 95 014 224 0.42
Wolfsburg 3896 9042 4.64 1.17 1.10 0.067 114 474 204 0.56

MV Rostock 3832 8877 4.63 1.18 1.09 0.057 180 835 181 1.00
NW Aachen 3838 9060 4.72 1.38 1.06 0.022 243 387 160 1.51

Bergisch Gladbach 2456 5674 4.62 0.81 1.08 0.023 116 460 83 1.40
Bielefeld 7005 16 843 4.81 2.60 1.07 0.005 333 409 258 1.29
Bochum 6996 16 208 4.63 2.01 1.07 0.031 357 434 145 2.45
Bonn 5804 13 743 4.74 1.62 1.06 0.033 298 244 141 2.11
Bottrop 2594 6401 4.94 0.93 1.06 0.023 120 419 100 1.20
Cologne (Köln) 16 336 36 066 4.42 4.30 1.05 0.013 1 171 662 404 2.89
Dortmund 11 562 27 160 4.70 3.47 1.06 0.076 597 406 280 2.13
Duisburg 8187 20 051 4.90 2.52 1.05 0.017 541 060 232 2.32
Düsseldorf 8755 19 833 4.53 2.33 1.06 0.011 629 943 217 2.90
Essen 11 046 25 677 4.65 2.94 1.06 0.012 566 901 210 2.70
Gelsenkirchen 4400 10 687 4.86 1.36 1.05 0.069 268 021 104 2.55
Gütersloh 3372 8165 4.84 1.13 1.06 0.045 89 440 112 0.80
Hagen 3733 8802 4.72 1.32 1.09 0.023 192 985 160 1.20
Hamm 4359 10 864 4.98 1.80 1.06 0.050 171 828 226 0.76
Herne 2614 6204 4.75 0.75 1.06 0.028 164 314 51 3.20

Continued on next page
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Table 5: Overview of the 80 most populated German cities by 2021 census [Sta22].

Reg. City = < : ! (106m) e q ?GHSL (inh.) � (km2) d

(
103inh.
km2

)
Krefeld 4333 10 578 4.88 1.49 1.06 0.083 228 622 137 1.66
Leverkusen 3232 7498 4.64 0.95 1.06 0.019 151 995 78 1.93
Moers 2895 7016 4.85 0.89 1.07 0.046 107 912 67 1.60
Mönchengladbach 5641 13 527 4.80 1.75 1.06 0.006 267 545 170 1.57
Mülheim an der
Ruhr

3097 7097 4.58 0.93 1.06 0.006 173 668 91 1.90

Münster 6918 16 314 4.72 2.46 1.07 0.037 341 446 303 1.13
Neuss 3558 8193 4.61 0.98 1.08 0.016 169 732 99 1.71
Oberhausen 3660 8894 4.86 1.09 1.06 0.012 210 994 77 2.74
Paderborn 1949 4616 4.74 0.56 1.07 0.033 93 098 44 2.09
Recklinghausen 2728 6638 4.87 0.87 1.06 0.109 118 133 66 1.78
Remscheid 1281 2965 4.63 0.38 1.09 0.005 55 548 32 1.73
Siegen 3140 7293 4.65 1.09 1.10 0.004 111 237 114 0.97
Solingen 3121 7412 4.75 1.00 1.08 0.010 158 327 89 1.77
Wuppertal 5872 13 333 4.54 1.81 1.08 0.019 349 787 168 2.08

RP Koblenz 2792 6173 4.42 0.84 1.08 0.012 121 517 105 1.15
Ludwigshafen am
Rhein

3976 9764 4.91 0.93 1.05 0.047 146 645 77 1.89

Mainz 4304 9901 4.60 1.06 1.07 0.031 192 033 97 1.96
Trier 2752 6261 4.55 0.77 1.08 0.023 124 173 117 1.06

SL Saarbrücken 4331 9555 4.41 1.33 1.08 0.003 185 580 167 1.11
SN Chemnitz 4463 10 658 4.78 1.76 1.07 0.013 281 487 220 1.27

Dresden 8166 20 675 5.06 2.90 1.05 0.014 604 470 328 1.84
Leipzig 8903 22 427 5.04 2.94 1.05 0.048 587 300 297 1.97

ST Halle (Saale) 4325 10 471 4.84 1.30 1.07 0.098 226 774 135 1.67
Magdeburg 4483 11 032 4.92 1.59 1.07 0.098 239 762 201 1.19

SH Kiel 3713 8561 4.61 1.17 1.06 0.008 236 948 118 2.00
Lübeck 3508 8349 4.76 1.37 1.08 0.015 214 359 213 1.00

TH Erfurt 4805 11 402 4.75 1.48 1.07 0.048 229 810 269 0.85
Jena 2231 5489 4.92 0.73 1.09 0.017 96 349 114 0.84
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