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• We use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical
features of sequences of actions of players.

• We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions from
which we extract action-type specific characteristics.

• This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis.
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a b s t r a c t

Studying human behavior in virtual environments provides extraordinary opportunities
for a quantitative analysis of social phenomenawith levels of accuracy that approach those
of the natural sciences. In this paper we use records of player activities in the massive
multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical
features of sequences of actions of players. We build on previous work where temporal
structures of human actions of the same type were quantified, and provide an empirical
understanding of human actions of different types. This study ofmulti-level human activity
can be seen as a dynamic counterpart of static multiplex network analysis. We show that
the interevent time distributions of actions in the Pardus universe follow highly non-trivial
distribution functions, from which we extract action-type specific characteristic ‘‘decay
constants’’. We discuss characteristic features of interevent time distributions, including
periodic patterns on different time scales, bursty dynamics, and various functional forms
ondifferent time scales.We comment on gender differences of players in emotional actions,
and find thatwhilemales and females act similarlywhen performing somepositive actions,
females are slightly faster for negative actions.Wealso observe effects on the age of players:
more experienced players are generally faster in making decisions about engaging in and
terminating enmity and friendship, respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The life of humans can be viewed as a sequence of different actions that are carried out from birth to death. Some of these
actions are carried out with high regularity on various timescales (circadian, yearly, etc.), others have significant stochastic
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Fig. 1. Short segment of action sequences, performed by four Pardus players. Different actions are shown by different letters as explained in Section 2. The
detailed analysis of time sequences of these multi-level action streams is the main goal this paper.

components. By now it is well established that distribution functions characterizing sequences of human actions over time
are highly non-trivial [1–12], and their origins remain largely unclear.

The very fact that distributions of human actions over time, such as distributions of phone calls, follow statistical laws
was known since the beginning of the last century [13], and triggered the origin of queueing theory [14]. Early attempts to
understand human action sequenceswere based on the assumption that actions are carried out homogeneously in timewith
constant rates, which then lead to Poisson processes [15]. This led to the conclusion that times between consecutive actions
of the same individual should be distributed exponentially. Models to describe human dynamics that are based on Poisson
processes are still widely used [16,17]. However, the careful analysis of various patterns of human activity provides growing
evidence for highly inhomogeneous bursty distributions of human actions in time. Further there is evidence for non-trivial
inter-dependencies of actions that influence their (usually power-law dominated) temporal statistics [1–12]. The latter was
found both for traditional human actions such as writing letters [3,7], checking out books in libraries, performing financial
transactions [4], or writing e-mails [1,2,6], web browsing [4], sending text messages [9], editing Wikipedia pages [10,12],
and many more. Different reasons have been suggested to explain their appearance. In particular, the priority queueing
model [2] is a possibility to explain the bursty mechanism of human behavior by a decision-based queueing process where
individuals perform tasks according to some priority. Thismay explain the observed correspondence patterns of Darwin and
Einstein [3]. Alternatively it has been hypothesized that human correspondence is driven not by responses to others but by
the variation in an individual’s communication needs over the course of their lifetime [7].

The common feature of the above mentioned observations is that they are based on the analysis of human actions of a
single type: either writing e-mails, or letters, or making phone calls, etc. The next step beyond these studies is to consider
themuchmore involved situationwhere tasks of different types are performed.What is the action dynamics of an individual
(or of a group of individuals) that writes both e-mails, and letters, and makes phone calls? Carrying out actions of different
typeswe callmulti-level human activity. The analysis ofmultilevel activity encounters obvious difficulties, typically requiring
serious efforts on data collection [18]. In this study we circumvent this problem by studying the log-files of all actions
performed in a virtual world, where actions of different types are performed by thousands of people [19,20]. The virtual
universe of the online game Pardus [21] is briefly outlined below.

Pardus is a massivemultiplayer online game (MMOG)which is online since 2004. It is an open-ended gamewith a world-
wide player base of more than 400,000 registered players [21,22]. The game has a science fiction setting and features three
different universes. All universes have a fixed start date but no scheduled end date. Every player controls one avatar, called
the player’s character. The characters act within a virtual world making up their own goals and interacting with the self-
organized social environment. There are a variety of different activities the characters can participate in, including commu-
nication, trade, attack, and other forms of social actions such as establishing or breaking friendships or enmities, see Fig. 1.
Since it has been launched, the Pardus game served as a unique testing ground tomeasure different observables that charac-
terize inhabitants of the virtualworld and in thisway to learn about complex social processes taking place in the realworld—
‘‘When the same six soldiers take out a dragon in a synthetic world, the dragon is not real but the teamwork is’’ [23]. Indeed,
with a complete record of complete information about millions of actions of different kinds performed by thousands of peo-
ple during several years from a single source, this setting provides the unique position to achieve a detailed non-intrusive
quantitative analysis of complex social behavior [22,24–32]. In particular, the complex network structure of the Pardus so-
ciety has been exposed and evidence was collected for several social-dynamics hypothesis, including the Granovetter weak
ties hypothesis and triadic closure [28]. In this way further evidence has been provided about validity of a model of online
communities for human societies, allowing to operate with a precision resembling that of natural sciences [22]. Further
analysis of the Pardus society has revealed the network topology of social interactions [24,28], mobility of characters [25],
behavioral action sequences [26], gender differences in networking [27], and the functioning of the virtual economy [30].

The main idea of this paper is to analyze the evolution of actions within the Pardus universe over time: what are
the temporal characteristics of actions taken by players? Is there an action-specific dynamics, and are there some global
processes that dominate the dynamics of players in the online world? It is well established by now that a number of
features of the virtual society resemble those in the offline society, giving hope to expect that the analysis of the virtual
world action dynamics will provide insights into human dynamics that is valid also for real societies. Social systems can be
quantified comprehensively by studying the superposition of its constituting socio-economic networks (multiplex networks,
see Refs. [33–35]) [24]. The same information is contained in the dynamical behavioral sequences (Fig. 1) of the individuals,
however with a focus on temporal aspects of the multi-level activity.

The paper is organized as follows. In Section 2 we describe the database and concentrate on the main observable
of interest, the interevent time τ and its statistics. We comment on the bursty dynamics of individual characters.
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Table 1
Characteristics of the data set. N is the number of characters that performed actions of a given type; Na , overall number of
actions performed by these characters during the observation period within 1238 consecutive days. Nτ is the number of
interevent time (τ ) values. τmin , τmax are minimal and maximal values of interevent times given in seconds.

Action type N Na Nτ τmax τmin

All 7818 8,373,209 8,365,391 63,882,774 0
Positive 7806 7,492,460 7,484,648 63,882,774 0
Negative 6918 880,749 873,831 91,715,678 0
A 5412 742,798 737,386 100,686,258 0
T 6883 561,327 554,444 86,705,400 0
C 7799 6,775,950 6,768,151 72,931,246 0
E 5638 105,958 100,320 100,232,580 2
F 7067 125,984 118,917 100,736,362 1
X 3653 29,199 25,546 87,400,240 1
D 3188 31,993 28,805 95,379,313 1

Action-specific dynamics is studied in Section 3. Therewe analyze inherent features of actions of different types and compare
actions performed by different types of players such asmale and female. The dynamics of the entire community of players in
the Pardus game is analyzed in Section 4. In particular, we discuss an increase of activity during periods of war in the game.
Conclusions and outlook are presented in Section 5.

2. Data set and general statistics of interevent times

The Pardus world consists of three different game universes: Orion, Artemis, and Pegasus. In this study we concentrate
on the Artemis universe because in this Universe complete data is available for all actions of all players [22]. The Artemis
universe is also the most densely populated universe over time, inhabited by more than 7000 active characters (see Table 1
for more details). Artemis was opened on June 10, 2007. Our analysis is based on the information about player activities
during 1238 consecutive days since the universe was opened. Every character in the game is a pilot who owns a spacecraft,
travels in the universe and is able to perform a number of activities of different types. There is no specified goal in the game,
the players make up their own goals and interact with their self-organized social environment. Every player picks a male or
female avatar, the age of the player is measured as the number of days since the first registration. We concentrate on the
following actions that can be acted out within the game

• sending private messages from one player to another (communication, C);
• attacking other players or their belongings (attack, A);
• trading or giving gifts (trade, T);
• marking friends by adding their names to a friend list (F);
• marking enemies by adding their names to an enemy list (E);
• removing friends from the friend list (D);
• removing enemies from the enemy list (X).

More information is found in Ref. [22]. It is important to note that actions performed by a character (such as trade, travel,
adding/removing friends) cost a certain amount of so-called action points (APs). The number of APs available per character at
once cannot exceed 6100. For each characterwhich owns less APs than theirmaximum, every 6min 24APs are automatically
generated. Once a character is out of APs, they have to wait for new APs to be regenerated. Social interactions, e.g. sending
private messages, planning, coordination, etc., do not cost APs. This feature adds one additional difference between the
action types and causes peculiarities in the behavior of characters, as we will see below.

Since the online human dynamics is very often emotion-driven [36,37], the above actions are labeled as ‘‘positive’’ or
‘‘negative’’ depending on their nature: A, E and D are considered as negative, while C, T, F, X are considered positive [22,26].
In some cases this classification may be questioned. For example, thorough categorization of the private messages would
have to take into account their content. However, we will classify C as a positive action because only a negligible part of
communication in Pardus takes place between enemies [22]. Since private messages are the most frequently performed
actions (≈80%), the number of positive actions is much larger than the number of negative ones.

Two observables are widely used to quantify action streams [2–4,6,7,9,12,38]. These are interevent time, i.e. the time
interval between two consecutive actions of the same person, and the waiting time, defined as the time interval between
the action (of one person) and reaction (of another person). The last quantity is sometimes understood as the ‘‘time to
reciprocate’’. In the correspondence pattern analysis the reaction on a received letter is another letter that is sent in reply.
However, there might also be mixed reciprocity, where the type of reaction differs from an action itself—say, an email sent
as a reaction on a phone call received. Because of this, we first simply focus on the interevent time, ignoring the type of
action. We denote this by τ . In Table 1 we collect the main features of the data set. The overall number of characters that
have performed at least one action in the Artemis universe is N = 7818, the overall number of actions performed during
the observation period of 1238 consecutive days is Na = 8,373,209. The majority of actions belong to the positive type (F, C,
T, X), due to the fact that C are considered as positive actions. The next in frequency are: A, T, F, E, D, and X. The number of
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Fig. 2. Number of players who performed k actions during the observation time. The majority of players performed few actions during the entire period,
while a few very active players provided huge activity statistics. The line shows scaling with an exponent of ∼−1.18.

a b

Fig. 3. Distribution of the interevent time τ for all players who performed at least 50 actions. (a) Entire observation period (1238 days), bin size is
6 h = 21,600 s. (b) First 24 h, bin size is 1 min. Inset: same as (a) for six days. Circadian rhythms are clearly visible.

actions Na is action type specific and ranges from Na = 6,775,950 for C, to Na = 29,199 for X. The number of players N who
are involved in any specific type of action is distributed rather homogeneously: several thousands of players for each action.

The histogram of the number of actions is shown in Fig. 2. Themajority of players performed just a few actions during the
entire period, while a few very active players provided huge activity statistics. We find an approximate power law scaling
with an exponent of ∼−1.18. Players with a small number of actions typically quit the game just after registration. These
players are not representative so that we exclude all players who performed less than 50 actions. Since all actions are time
stamped with an accuracy of one second, we can calculate interevent times, τ . The distribution of τ follows a power law as
seen in Fig. 3(a) and (b). The exponent depends on the chosen time scale (bin size). The periodic pattern (inset) corresponds
to circadian cycles [10,11,17]. To focus on the dynamicswithin the first 24 h in (most frequent values for τ ) we take a bin size
of 1 min, Fig. 3(b). The local minimum, which appears on this scale for τ = 7 h = 25,200 s can be explained by the ‘‘active
working day’’. Since it is more convenient to play in the morning (before work) or in the evening (after work), interevent
intervals of 7 h are less probable than those for 8, 9, or 10 h. One observes a further regime at small values of τ , corresponding
to immediate or slightly delayed repetition. This can be observedwithin the first 3min after the performed action. This is due
to the peculiarities of different actions. For example, attacks could be naturally grouped into sequences due to repeatedly
pressing an attack button to attack the same opponent, while a separate decision is needed to add each new enemy. Further,
player synchronization might play a substantial role, where two players can react promptly when they are both online, but
only with a (significant) delay if one is offline. It is possible that the shape of the interevent times distribution after these
first ‘‘immediate’’ values is influenced by the login behavior of players.

The power-law-like distribution of interevent times between the actions indicates the bursty nature of human
dynamics [2,3,5]: periods of high activity are separated by long periods of inactivity. Although the origins of such a non-
uniform distribution of actions are highly diverse, it is recognized to be an inherent feature of human dynamics. A measure
for burstiness B was introduced in Ref. [8], its simplified version (see Refs. [10,12]) is defined as follows:

B ≡
σ − m
σ + m

, (1)
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Fig. 4. Action streams of players with different values of burstiness B. Lines mark times of executed actions, the distance between lines is the interevent
time.

a

b

c

Fig. 5. Histogram of burstiness calculated for (a) all action types, (b) communication C, and (c) attacks A. The most frequent (maximum) (B̂) and the mean
(B, red lines) values are B̂ ≃ 0.53, B ≃ 0.53 (a); B̂ ≃ 0.50, B ≃ 0.49 (b); B̂ ≃ 0.65, B ≃ 0.48 (c), respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

where m is the average of the interevent time τ and σ its standard deviation. For a regular pattern we have B ∼ −1, for a
random Poissonian process with a fixed event rate, B ∼ 0, and for fat-tailed distributions of time intervals, B ∼ 1.

In Fig. 4 we show (compressed) action streams of players with different values of B. Each line marks the time of an
executed action. The patterns on the left-hand side correspond to the activity with (a) maximal, (b) minimal, and (c) close to
zero values of B. A random distribution of actions over the time line is characterized by B ∼ 0. It is observed that seemingly
very different activity patterns can be characterized by similar values of burstiness, Fig. 4(d)–(f). The histogram of B for all
players is shown in Fig. 5(a). The most frequent value (maximum) (B̂ ≃ 0.53) as well as the average (mean) (B ≃ 0.53)
values are both larger than 0.5. The average burstiness values for the process of real-world mobile communication is more
than two times smaller, B ≃ 0.2 [10], while for Wikipedia editing (events correspond to consequent edits of Wikipedia
articles) it is ∼0.6 [12]. The maximum of the histogram of B, for attacks, Fig. 5(b), has larger values than for communication,
Fig. 5(c). This illustrates the intuitive understanding of the nature of these actions: attacks appear highly clustered within
short time intervals, while communication is more uniformly distributed over time.

3. Action-specific dynamics: decay constants of human actions

In this section, we ask if it is possible to discriminate between actions types given only information about their interevent
time distributions. We can show that the ‘‘decay’’ of the interevent time distribution serves as a distinguishing feature of
action types. To quantify this decay we introduce ‘‘decay constants’’ that are specific for different actions. We calculate the
inverse cumulative distributions of interevent times P≥(τ ) for each of the seven action types. They are shown in Fig. 6 for
communication (C), attacks (A), trade (T) and for the friendship–enmity marking actions F, D, E, and X. Due to the massive
contribution of C actions, the curve for all actions is dominated by the C distribution.
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Fig. 6. Inverse cumulative distribution of interevent times τ for all players (no binning) and for different kinds of actions. Inset: same plot in log-linear
scale, for τ > 2 · 107 s (>8 months). The actions are: communication (C); attack(A); giving gifts/trade (T); making friends/enemies (F/E); removing
friends/enemies (D/X).

Table 2
Decay constants and decay exponents for various actions at different time scales. The interevent time distribution
P≥(τ ) for the early-day interval is governed by the power law, Eq. (2), whereas the late-day and long-time intervals
are governed by the exponential decay, Eq. (3). Values forα and τ0 are given in the table for different types of actions.

Early-day α Late-day τ0 Long times τ0

A −0.07 ± 1.2e−04 −2.46e−06 ± 7.5e−10 −3.64e−08 ± 6.6e−11
T −0.05 ± 4.9e−05 −1.81e−06 ± 7.5e−10 −3.70e−08 ± 1.3e−10
C −0.24 ± 6.3e−05 −5.65e−06 ± 1.1e−09 −4.55e−08 ± 2.2e−10
E −0.01 ± 3.9e−05 −0.56e−06 ± 8.2e−10 −3.49e−08 ± 4.9e−11
F −0.03 ± 5.6e−05 −0.88e−06 ± 6.9e−10 −3.80e−08 ± 3.9e−11
X −0.01 ± 5.1e−05 −0.29e−06 ± 1.2e−09 −3.41e−08 ± 1.1e−10
D −0.01 ± 4.6e−05 −0.34e−06 ± 1.1e−09 −3.13e−08 ± 9.7e−11

Based on our previous observations (see Section 2), we are particularly interested in the behavior on three different time
scales: immediate reaction where τ does not exceed a couple of minutes; early day, τ is less than 8 h; and the late day, τ is
between 8 and 24 h. Our main observations are

• Immediate reaction (τ ≤ 360 s). P≥(τ ) is shown in Fig. 7(a). All curves have a tendency to decay fast at small values of
τ . The decay is especially pronounced for T, D, F, X, and E actions. This means that short interevent times are typical for
most of the actions. Large numbers of attacks or emotional addings–removings are performed one-by-one in a very fast
way (grouped into sequences), while the probabilities of τ values greater than 1 min start to decrease very slowly. The
decay for short interevent times for T and C is less steep, whereas its further evolution remains more homogeneous.

• Early day (6 min < τ < 8 h). For this case P≥(τ ) is best approximated by a power law

P≥(τ ) ∼ τ−α, (2)

with small exponents in the range of α ∼ 0.01 − 0.1 for all actions except C, for which we have α ∼ 0.24, see Fig. 7(b).
Not only the faster decay, but also the shape of P≥(τ ) for C looks a bit different: the change of regimes could be seen
very well—practically the same shape of cumulative interevent time distribution for online communication process was
reported in Ref. [39]. The exponents for each curve are collected in the second column of Table 2.

• Late day (8 h < τ < 24 h). P≥(τ ) in this region is shown in Fig. 7(c). We fit here the decay by the exponential function,

P≥(τ ) ∼ exp(−τ/τ0). (3)

Values of τ0 are collected in the third column of Table 2. The slow exponential decay is described by slightly different
action-specific values of τ0. This difference has a tendency to diminish for larger time intervals. The fastest decay is
observed for C, with τ0 ≃ 5.6 · 10−6, which is twice as large than for A (τ0 ≃ 2.5 · 10−6), and ten times larger than the
other actions.

• Long times(τ > 2 · 107 s). An exponential cut-off for large τ (more than eight months) becomes apparent in P≥(τ ), see
Fig. 6. The exponential decay has similar numerical values for the different actions providing evidence for a cut off effect.

The results indicate that the various types of actions are characterized by distinct decay properties of the interevent time
distributions. The values α in Eq. (2) and τ0 in Eq. (3) may serve as ‘‘decay constants’’ and turn out to be action specific.
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a b c

Fig. 7. Inverse cumulative distributions of τ in different time intervals. (a) τ ≤ 360 s, log-linear scale; (b) τ ≤ 105 s, log–log scale (fits obtained from
6 min–8 h interval); (c) τ ≤ 105 s, log-linear scale (fits from 8–24 h interval). Behavior on three different time scales is governed by different decay
constants, see Table 2 and text.

a b

Fig. 8. Inverse cumulative distributions P≥(τ ) (for τ ≤ 360 s) for different types of players: (a) male (dashed) and female (solid), (b) young (solid) and old
(dashed). Gender differences for actions C, T and A are minimal, we only present F, E, D and X actions here. The interevent time distributions of males and
females performing positive actions (F and X) almost coincide, whereas this is not the case for the negative actions (E and D). The situation is different for
the groups of young and old players: marking of friends is performed with about the same speed for both ages, the old players are always faster with the
other actions.

This is especially pronounced for interevent times in the time intervals ‘‘early-day’’ (6min < τ < 8 h), and ‘‘late-day’’
(8 h < τ < 24 h). The ‘‘long time’’ exponential decay can be safely interpreted as a finite size effect of the sample. The
average values of interevent times τ also point to the different speeds in performing different kinds of actions. Due to the
contribution of some rare but large values of τ , as well as the periods of natural inactivity (circadian cycles), the values of τ
are large:∼12.6 h for C,∼51.8 h for A,∼117.1 h for T,∼439.3 h for F,∼579.3 h for D,∼414.3 h for E,∼829.5 h for X. τ is the
smallest for communication andmuch larger for any other kind of activity. The above described interevent time distributions
are essential ingredients in successful modeling of web users (see, for instance, Ref. [40] and references therein).

We conclude this section by studying players of different type. For the majority of actions, the interevent time
distributions of males and females are very similar. We concentrate here on the actions where slight gender effect is
present. In Fig. 8(a) we compare P≥(τ ) (for small τ ) for the E, F, D, and X actions of female (solid curves) and male (dashed
curves) game characters. There is a slight gender effect in action interevent times in the process of marking friends and
enemies, compatible with what has been previously reported on a social network level in Ref. [27]. The difference for the
negative actions (enemy adding and friend removing) and the positive actions (friend adding and enemy removing) might
be explained by underlying biological or socio-dynamic reasons. Cf. the difference between positive/negative emotions as
explicitly analyzed in Refs. [36,37]. The interevent time distributions of males and females performing positive actions (F
and X) almost coincide, whereas this is not the case for the negative actions (E and D), see Fig. 8(a). The corresponding curves
for females are always above those for males: negative actions performed by females have shorter time intervals. Males and
females act almost similarly when performing positive actions, whereas females are faster in negative ones. Note, however,
that such a difference is not observed for the A, T, and C actions.

The details of the friendship–enmitymarking actions can be observed also for playerswith different experiences. Fig. 8(b)
shows P≥(τ ) (for small τ ) for young (solid curves) and old (dashed curves) players: the F curves coincide for young Pardus
players. Old players are defined as those who have started the game one year before the last day of the data set. Young
players entered the game within the last year in the observation interval. The curves for old players are always above those
of the young players. The time intervals between marking somebody as an enemy or removing the marks are shorter for
experienced players. The speed of marking friends is the same for all players. The majority of friends are typically marked
early on in Pardus ‘‘life’’.
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Fig. 9. Number of actions of all types per day on the timeline. There are four pronounced peaks in the player activities that correspond to specific events that
happened in the virtual world in the observation period: the three colored vertical stripes indicate war periods, the vertical line indicates the introduction
of a major new game feature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Global dynamics and activity patterns: war and peace

We now study how actions are distributed in time. The number of all actions types pooled together is shown for every
day in Fig. 9. The time interval starts on 2007-06-12 and covers 1238 consecutive days of players activity. There are four
pronounced peaks in the player activitywhich cannot be understoodwithout knowing the history of the virtualworld during
the observation period.

• The peak of activity on March, 2008 (magenta line in figure) was caused by the introduction of newmajor game features
called ‘‘Syndicates’’ on March 7, 2008 [41]. Big changes in the game usually become a hot topic to discuss, leading to the
higher level of C activity.

• The peak of activity in August–September, 2008 (blue stripe in figure) corresponds to the 1st war, that occurred in the
period between 2008-08-08 and 2008-09-17 (war I).

• The peak of activity in January–March, 2008 (green stripe in figure) corresponds to the 2ndwar, 2009-01-18–2009-03-04
(war II).

• The peak of activity in end December 2019–February 2010 (orange stripe in figure) corresponds to a 3rd war between
2009-12-25 and 2010-02-12 (war III).

Before discussing player activity in peace and war periods we briefly explain how a war emerges in the virtual world.
According to the specifics of the game [21] each player can belong to one of three factions (organizations) or stay neutral.
There are three factions in the game: 1—‘‘Federation’’, 2—‘‘Empire’’, 3—‘‘Union’’. Only two factions can participate in a war
simultaneously. During the observation period the following pairs of factions were involved in wars: Factions 1 and 2 in war
I and factions 1 and 3 in the next two wars. Factions 2 and 3 were never engaged in a war within the observation period.

Table 3 collects basic statistics of actions during war and peace periods. The change in activity that leads to the overall
increase of the number of actions of players engaged in war can be analyzed in more detail by studying the distributions for
specific actions. The most distinct peaks are observed for C and A. In Fig. 10 we show the weekly number of C (a) and A (b)
for the different factions. The highest number of actions occurs in those factions that are involved in wars. While the general
level of activity during the wars increases, there are no distinct differences in the distributions of interevent times for peace
and war periods, respectively.

Taken that a war in a virtual world arises as a result of a complex process of social interactions between the players it
is tempting to seek for war precursors. To this end we decided to check whether changes in player activity (of the different
actions) may serve as a predictor for an upcomingwar. In Parduswar officially starts whenever a so-called ‘‘faction-relation’’
ratio, defined by the game system for each pair of factions, exceeds a certain threshold value. The faction-relation is evaluated
daily in a specific way that takes into account numerous behavioral factors of all players organized in factions, for more
information see Ref. [21].

To test if one can predict a war based on activity data only, we applied a cross-correlation analysis and scanned for
potential lead effects of activity patterns on the faction-relation time series. We performed a systematic scan for lead–lag
relationships, involving all types of actions (some are seen in Fig. 10), all combinations of factions, for several sizes of time-
windows. While we see clear differences between periods of war and peace in the extend of cross-correlations, we were
unable to find conclusive precursors for the onset of war. This negative finding does not exclude the existence of other
indicators that could have more predictive power than the activity patterns alone.
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Table 3
Statistics of behavioral time series corresponding towar and peace periods (all actions).N is the number of players that performed actions in a given period;
Na is number of actions they performed; Nτ is the number of interevent time (τ ) values; τmax is the maximal interevent time. Also given, percentage of
positive and negative actions, percentage of actions performed by male players. The last line represents data for the overall peace period (all war periods
ignored).

N Na Nτ τmax (s) % pos actions % neg actions % male

All warsa 4883 1,350,144 1,345,119 9,856,569 84.9 15.1 87.5
War I 3034 422,386 419,181 3,111,881 84.2 15.8 86.8
War II 3173 470,262 466,928 3,828,040 87.5 12.5 87.0
War III 2816 457,496 454,532 4,024,289 82.8 17.2 88.5
Peaceb 7776 7,023,065 7,015,281 52,305,174 90.4 9.6 86.4
a Peace periods are ignored in the calculation of tint .
b War periods are ignored in the calculation of tint .

a b

Fig. 10. Number of weekly actions for different factions of players. (a) Communication C; (b) attacks A. Activity of players involved in wars is increased.

Fig. 11. Cross-correlations between the number of actions (all types pooled together) and the faction relation for different factions using the sliding
window of size 100 days. (a) Factions 1 and 2. Note that they fight against each other in war I; (b) factions 1 and 3. They fight in wars II and III; (c) factions
2 and 3, who never fight against each other. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

The cross-correlation values (colors) for all actions as a potential predictor for the faction-relation time series are
presented in Fig. 11. Lead and lag values are on positive and negative y-axis, respectively.War regions aremarked by vertical
bars.

5. Conclusions

We used records about player activities in the MMOG Pardus to analyze several dynamical features of player actions.
It has been shown in the previous work that the characters in Pardus display rich and realistic social behavior [22,24–32].
This includes the complexmultiplex network structure of the Pardus society, complexmultiplex network topologies of social
interactions, non-ergodic behavioral action sequences, etc. In the present studywe extend these observations by a thorough
analysis of the interevent time distributions P≥(τ ) for the activities players can perform in the game. In particular we have
shown that the interevent time distributions in the Pardus universe are highly non-trivial in nature. One feature of these
distributions is the presence of periodic patterns on different scales, which correspond on the one hand to trivial circadian
cycles, on the other hand tomore non-trivial periods of theworking day and to short scales of straightaway reactions. Similar
to human activities in the real-world, non-trivial distributions go hand in handwith bursty dynamics [2,3,5,8]. Themeasured
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value of burstiness of player actions, B ≃ 0.6 is compatible to the values reported for other types of human actions [10,12]
and implies long periods of inactivity between active periods.

Interevent time distributions for different actions show that although these distributions share several features, they
are specific for the various types of actions. Different kinds of actions are characterized by different decay constants which
indicate the typical ‘speed’ of performing: time intervals between messages are usually shorter comparing with the other
actions kinds, while the attack is performed faster than trade; the longest time is necessary for friendship and enmity
marking. We quantified decay times by exponential, Eq. (3), and power law, Eq. (2) fits to P≥(τ ), depending on the time
scale. The interevent time distributions are well fitted by power law within the interval 6 min < τ < 8 h, while for longer
time intervals (6 min < τ < 8 h) they are distributed exponentially. For long interevent times (8 h < τ < 24) the
differences between actions types become less pronounced. The average values of interevent times τ also indicate different
speeds in performing different types of actions. Even given the inactivity periods due to circadian cycles, the value of τ is
smallest for communication and is much larger for other types.

Finally, we observed periods of increased activity in the Pardus due to history specific events, such as wars that were
waged in the game. Our search for potential predictive indicators that would signal the onset of war leads to the negative
conclusion that changes in player activity do not serve as reliable indicators of an upcoming massive conflict.
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