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HIGHLIGHTS

e We present a novel method for predicting air pollution emissions using transport data.
e Study uses measured microscopic transport data and a microscopic emissions model.

o GPS data from over 15,000 vehicles were analyzed to quantify speeds and accelerations.
e CO,, NOy, VOCs and PM were modeled in high spatio-temporal resolution.

e Highly localized areas of elevated emissions were identified.
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ABSTRACT

Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its
adverse impact on human health and well-being. Previous studies which have aimed to quantify
emissions from the transportation sector have been limited by either simulated or coarsely resolved
traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this
study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were
analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled
the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which
provided the basis for a microscopic emissions model. Carbon dioxide (CO;), nitrogen oxides (NOy),
volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly
localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible
with previously used methods for estimating emissions. Relatively higher emissions areas were mainly
concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central
urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of
Singapore were found to be comparable to another emissions dataset. Results demonstrated that high-
resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer
highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a
complement to traditional emission estimates, especially in emerging cities and countries where reliable
fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate
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measured microscopic vehicle movement in tandem with microscopic emissions modeling for a sub-

stantial study domain.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With mass urbanization happening at an unprecedented scale,
urban air quality is becoming an issue of global concern (WHO,
2014a,b). Growth in populations, traffic, industrialization and en-
ergy usage have led to increased air pollution levels and subsequent
public health effects at the urban, regional and global scale
(Akimoto, 2003; Molina et al., 2004; Gurhar et al., 2010) The World
Health Organization estimates that ambient air pollution leads to
approximately 3.7 million premature deaths annually worldwide,
with South-East Asia and the Western Pacific Regions having the
largest air pollution-related health burden (WHO, 2014b).

The adverse impact of air pollution exposure on human health is
well documented in the literature (WHO, 2014b). Epidemiological
studies have quantified the relationship between adverse health
effects and both long- and short-term exposure to air pollution
(Bell et al., 2004; Jerrett et al., 2005; Laden et al., 2006; Lewtas,
2007; Krewski et al., 2009; Nyhan et al., 2014a, 2014b). In assess-
ing the impact of air pollution on mortality in the United States,
Caiazzo et al. (2013) reported that the largest sector contributor of
pollutant-related mortalities is road transportation, causing
approximately 53,000 PM,s-related deaths and approximately
5000 ozone-related deaths per year. These figures corresponded to
premature deaths from cardiovascular diseases and lung cancer
due to long-term exposure to PM,5 (where PM, 5 refers to the
particulate matter fraction which is less than 2.5 pm in aero-
dynamic diameter).

Traditional methods for monitoring urban air quality employ
discrete measurement stations which sample atmospheric condi-
tions at specific sites throughout a city. Networks vary both in size
and scale. The London Air Quality Network has over 50 sites clas-
sified as roadside, background, suburban and industrial that are
dispersed throughout the whole metropolitan area (Laxen et al.,
2003). Singapore, which is the focus of this study, has 14 high-
grade stations operated by the National Environment Agency,
gathering data throughout the island (NEA , 2015). Traditional ap-
proaches to monitoring air quality have several limitations,
including significant investment required to set up and maintain
the measurement networks. Furthermore, as air quality can exhibit
large variations over a relatively small scales (Britter and Hanna,
2003), sampling biases can be introduced which make the assess-
ment of human exposure and the sources of pollutants difficult
(Vardoukalis et al., 2005). As a result of this, municipal air quality
monitoring is often supplemented by air quality models such as the
AERMOD modeling system (USEPA, 2009) and the ADMS Urban
model (CERC, 2015) to improve the spatial and temporal resolution
of air pollution estimates. Sparsely located air quality monitors are
limited in their usefulness for accurately determining the locations
of air pollution sources. Therefore, air quality monitoring using
distributed networks of sensors has gained traction as sensors are
becoming smaller, less expensive yet more reliable (Chong and
Kumar, 2003; Burke et al., 2006; Cuff et al., 2008; Paulos et al.,
2009; Kumar et al., 2015), providing a wealth of high spatial reso-
lution air quality information.

The availability of large transportation and mobility datasets
from sensors, Global Positioning System (GPS)-enabled devices,
along with improvements in methods and computational facilities

for analyzing these have led to advancements in the field of urban
computing research in recent times. So-called opportunistic
sensing which is the use of data that is collected for one purpose
but can be reused for another one (Campbell et al., 2008), has
proved useful in many research studies. Examples include using
various anonymized or aggregated spatio-temporal datasets
created by different aspects of human activity, such as cell phone
data (Gonzalez et al., 2008; Sobolevsky et al., 2013; Hoteit et al.,
2014; Kung et al., 2014; Pei et al., 2014; Grauwin et al., 2014) or
vehicle GPS traces (Kang et al., 2013). One such example of
opportunistically utilizing vehicle GPS traces is a recent study by
Santi et al. (2014) where the economic and environmental benefits
of vehicle pooling in New York were quantified based on the ana-
lyses of a taxi GPS dataset consisting of 150 million trips.

Emissions from on-road motor vehicles constitute one of the
largest contributions to air pollutants such as carbon monoxide,
nitrogen dioxide, ozone, selected volatile organic compounds and
fine particulates (Molina and Molina, 2004), and also represent a
factor in the spatial variability of air quality in urban areas (Fecht
et al, 2016). Vehicle emissions have typically been estimated
with the use of either measured (through loop detectors or similar)
or modeled (using a transport simulator) traffic data. Based on this
information, emission factors are commonly used to convert traffic
loads into emissions (NARSTO, 2005). Emission factors vary from
location to location, and depend on the vehicle model and road
conditions (Zhang and Morawska, 2002; North et al., 2006). The
application of emission factors to traffic loads is unable to account
for real driving conditions as they happen on the road (Samuel
et al., 2002). Thus, as an alternative, different vehicles models
with different load factors are often used as probes, whose emis-
sions (and eventually the emission of nearby vehicles) are
measured on the road (Canagaranta et al., 2004; Shorter et al,,
2005). The aforementioned approaches do not allow the high res-
olution spatiotemporal mapping of emissions as they do not take
into account the ‘drive cycle’ which is the description of a vehicle’s
velocity over time. The drive cycle allows the precise determination
of consumption and hence emissions (Mantazeri-Gh and
Naghizadeh, 2003; Int Panis et al., 2006). In the widely used MO-
BILE Model (USEPA, 2012), only 14 different drive cycles are used;
however, these are only expressed as average speed. Many studies
have examined the impact of different vehicle modes (idling,
moving and accelerating) on the release of pollutants. In a study by
Frey et al. (2003) average emissions were observed to be five times
greater during periods of acceleration for hydrocarbons and carbon
dioxide, and reached ten times as much for nitric oxide and carbon
monoxide compared with levels found in an idling vehicle. Simi-
larly, ultrafine particulates released whilst a vehicle is accelerating
have also been shown to increase significantly (Fruin et al., 2008).
Hence, there is a need for the use of more detailed drive cycles,
including velocity and acceleration parameters resolved in high
spatial and temporal resolution, in modeling emissions from
transportation.

Many studies have led to the development of models that
consider variations in speed and are appropriate for instantaneous
emission modeling. These include the Comprehensive Modal
Emissions Model developed at the University of California (An et al.,
1997; Barth and Scora, 2006) and others (e.g. Rakha et al., 2004;
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Pelkmans et al., 2004; El-Sgawarby et al., 2005). Along with this,
significant effort has been devoted to the use of micro-simulation
methods for transportation modeling on road networks, for rep-
resenting real-time, behavior-based policies (e.g. Ben-Akiva et al.,
1997; Hu and Mahmassani, 1997; Liu et al, 2006). Individual
driver behavior and individual vehicle’s real-time space-time tra-
jectories are explicitly represented through traffic micro-
simulation models and these produce detailed vehicle operation,
instantaneous speed and acceleration of vehicles that are necessary
for microscopic emissions models. A review by Fontes et al. (2015)
examined combining various micro-simulation tools for assessing
the impacts of road traffic on the environment, and identified best
practices which would aim to minimize errors in combining these.
Int Panis et al. (2006) presented a methodology for making
instantaneous emission modeling compatible with traffic micro-
simulation models. In particular, the emissions caused by acceler-
ation and deceleration of vehicles were modeled based on micro-
scopic traffic simulation model integrated with an instantaneous
emission model. The functions developed by Int Panis et al. (2006)
were incorporated into a study addressing optimum mitigation
strategies for urban transportation emissions by Osorio and
Nanduri (2015) where a combination of macroscopic and micro-
scopic traffic simulators and emissions models were employed.

Recent developments in the field of vehicle emissions have seen
the uptake of cell phones and their built in sensors as on-board
diagnostic systems - using the data gathered from the GPS and
accelerometer to monitor the drive cycle and hence consumption
and emissions (Thiagarajan et al., 2009). These approaches have
been mostly confined to single or small numbers of vehicles. In this
study, however, it is intended to extend an emissions model to a
large vehicle fleet using GPS data collected. Intelligent Speed
Adaption (ISA) systems are technologies which incorporate GPS
navigation to apply speed limits to cars on specific road areas.
Systems for monitoring and controlling vehicle velocities include
ISA systems (Duynstee et al., 2001; Int Panis et al., 2006). These
could also be used for reducing emissions and fuel consumption on
road networks, but require fine-grained emissions predictions
based on real-time GPS data.

The purpose of this study is to use data routinely captured by
existing transportation networks and vehicle fleets to predict
vehicular emissions in high spatial resolution. For this, GPS mea-
surements gathered by a large taxi fleet in Singapore would be
analyzed. Parameters representative of vehicle drive cycles would
then be characterized in high spatial and temporal resolution at
points throughout the road network. A microscopic emissions
model would be implemented to predict the emissions of carbon
dioxide (CO,), nitrogen oxide (NOy), volatile organic compounds
(VOCs) and particulate matter (PM) throughout the study domain,
where particulate matter here refers to total suspended particles.
Highly localized areas of elevated emissions would thereby be
identified, with a higher spatiotemporal precision than commonly
used methods. This is the first study to implement a microscopic
emissions model using measured microscopic vehicle trajectory
data for an entire urban region.

2. Methodology
2.1. Overview of methodology

In order to develop an emissions inventory, GPS trajectory data
from 15,236 taxis were analyzed. From this, the instantaneous
parameters of velocity and acceleration were derived and used as
inputs for a microscopic emissions model. Emissions of CO,, NOy,
VOCs and PM were predicted across the road network of Singapore
using this model. An analyses was completed which compares the

taxi data used to the overall traffic on the road network in
Singapore. Following this, emissions from the remainder of the
total motor vehicle population of Singapore were also estimated.
The results were compared to emissions estimates produced to
those attained from the National Aeronautical and Space Agency
(Streets and Lu, 2012).

2.2. Study domain and GPS data processing

The study domain included the island of Singapore, which
covers approximately 718 km?. Singapore has a population of
5,469,700 people (Singapore Department of Statistics, 2015),
thegefore has an average population density of 7618 persons per
km~.

Our analysis used vehicle GPS traces collected over a period of
one week from 15,236 taxis in Singapore. The raw data included the
following parameters: identification number of the vehicle, a
timestamp of when each location measurement was performed,
the corresponding latitude and longitude defining the position of
the vehicle. The data samples were collected at varying temporal
intervals every few seconds. Our data was collected from an un-
disclosed vehicle fleet operator, which operates over the majority of
the island of Singapore on a 24-h basis. Each vehicle contained
within the fleet transmits information including its identification
number, location and status at various intervals to a central oper-
ations base. The dataset contained over 120 million vehicle-GPS
samples measured from the 21st February 2011 to the 27th
February 2011.

The GPS trace data was utilized to infer both the location of each
vehicle, its velocity and its acceleration. In applying a data cleaning
process to the dataset, erroneous GPS points which fell outside the
boundary of Singapore or which have an unreasonable distance
from its previous location at a given time interval (distance/time <
150 km/h) were eliminated. The instantaneous velocities of vehi-
cles were determined based on the time and distance between geo-
referenced points. The data was filtered so as to only examine
changes in velocity that occurred over short temporal ranges,
where two consecutive data points were separated by no more than
5 s as intervals greater than this are unable to depict the micro-
structure of the acceleration profile. A secondary filtering process
was applied to the data to remove errors attributed to GPS mea-
surements, as these may be affected by the multi-path effect within
urban canyons (Parkinson, 1996). An outlier filter was used that
removed all the acceleration values that exceeded 10 ms 2 as these
values are generally not attainable in an average car. The normative
driving cycle, used to homologate vehicles emissions are charac-
terized by a maximum acceleration of 1.5 ms~2 for FTP-72 and
4 ms2 for LA92 (Guzella and Sciarreta, 2005; Metric Mind
Corporation, 2012), therefore sampling points with an accelera-
tion value between 0.5 and 10 m s~ were used in this study.

2.3. Comparison of taxi fleet and total traffic

By applying the above filters, the distribution of the sampling
intervals of the 15,236 taxis, indicate that only 7.71% of the logged
data has a sampling interval of less than 5 s as well as a valid ac-
celeration value. This indicates that the majority of vehicles
demonstrate intermittent data logging at intervals greater than 5s.
The spatial distribution of the valid samples was correlated with a
co-efficient of determination of 0.75 to the spatial distribution of
the raw vehicle-GPS points. In order to examine the spatial distri-
butions of GPS points, the city was divided into road links. The valid
accelerations of all the vehicles were then attributed to one of the
road links based on their latitude and longitude data, and were
projected onto a map of Singapore.
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Aslam et al. (2012) demonstrated that vehicular GPS taxi
network data can be used to infer general traffic patterns in
Singapore. Aslam et al. (2012) used data from the same taxi fleet as
used herein this study. Measured traffic data (i.e. counts of vehicles
on road links per time intervals) were obtained through loop count
data from the Land Transport Authority (LTA) of Singapore. By
examining the fraction of road segments the taxi fleet covers during
workdays, it was concluded that 700 taxis were sufficient to cover
70% of the roads for the majority of the day’s 1-h time windows,
with the exception of those in the middle of the night when vehicle
numbers are sparse. Further to this, Aslam et al. (2012) also
observed that 2000 taxis were sufficient to cover 90% of the total
loop detector locations during a period of 15 min in the morning
(from 08:00—08:15) on all workdays. Similarly, we compared our
taxi fleet data to measured traffic data obtained from loop detectors
operated by Singapore’s LTA for the same time period as our study.
To achieve this, the taxi data was synchronized with the loop de-
tector data, which was aggregated every 15 min. The time series of
GPS points for taxis were first matched to road links and then
segments on the road network of Singapore. The number of taxis on
road segments where loop detectors are located, were counted
every 15 min. These counts were then compared to the loop counts
which were regarded as the ground truth for traffic conditions.
Fig. 1 shows the taxi and loop detector count data for 15 randomly
selected Singapore road segments. The taxi distribution tended to
underestimate the loop distribution and this underestimation was
variable across road segments. On each road link, a bias was
observed which varied throughout the day, however this bias was
relatively consistent across days.

For inferring general traffic patterns, an artificial neural network
model was employed, as has been used in another study for pre-
dicting traffic volumes on road links (Moretti et al., 2015). The
model utilized was a simple corrective model for inferring vehicle
distribution as detected by loop detectors from vehicle distribution
as determined by the taxi fleet. A 2-layer feed-forward network was
implemented, with a tan-sigmoid transfer function in the hidden
layer and linear transfer function in the output layer. The model
was run for 500 road segments. In determining the performance of
the model, a linear regression between modeled traffic volume and
the corresponding targets of measured traffic volume was con-
ducted. Fig. 2 shows the results of learning for trained model for a
sample of data points. As there is a strong association between the

modeled and measured traffic volumes, this demonstrates that the
taxi fleet data may be used to predict general traffic on specific road
segments, and the results were similar across the road network of
Singapore.

2.4. Microscopic emissions model

A microscopic emissions model was implemented and this
computed the instantaneous air pollution emissions associated
with CO,, NOy, VOCs and PM. The emissions model was based on a
model developed by Int Panis et al. (2006), and has been adopted by
Osorio and Nanduri (2015). The model utilizes instantaneous ve-
locity and accelerations derived from the GPS dataset to compute
emissions. The emission rate at a given time-instant t is given in the
following equation:

Esz(t) = max Egnv f]knl +f2knvﬂ(t) +f3knvn (t)z +f4{(naﬂ(t)

+ a0 + foun(Dan(0)]. (1)

where k is the pollutant type, i.e. k € {CO,, NOy, VOC, PM}, v;(t) is
the instantaneous speed of vehicle n at time ¢ (in m/s), ERK(t) is the
instantaneous emissions rate of pollutant k (in g/s), an(t) is the
instantaneous acceleration of vehicle n at time ¢ (in m/s?), E’én is the
lower limit of emission rate for each pollutant type (in g/s), and
fk. fk. fk, K, fK and fk are the emission rate constants spe-
cific to each vehicle and pollutant type. Equation (1) holds for CO,
and PM emissions. For NOy and VOC emissions, the emissions rate
coefficients differ depending on whether the vehicle is in acceler-
ation or deceleration mode. If ay(t)>—0.5 m/s, then

ERS(6) = max |[Efy, iy + Fywn(6) + Fyon(©)? + iy nan (0

+ ¥ 1 nan(©)? + By (©an(0)], )
otherwise, if ay(t)< —0.5 m/s, then
ERlé(t) = max [Eg"’ f]k'ﬂ +f2knv"(t) +fifn”'”l(t)z +féll<(2)nan(t)

+ f& 2 n@n (02 + f oy (D)an ()|, 3)

The lower limit of the emissions rate E is fixed to zero for all

Volume (% of total traffic)

T T T T T T T T

—Taxis :
Loop Detectors |-+ —

Road Segment

Fig. 1. Distribution of traffic volumes (i.e. number of vehicles per road segment) on 15 randomly selected road segments for the 23rd February 2011. The x-axis includes 15 road
segments including a point for every 15 min during the 24-h day. The y-axis represents the percentage of traffic at that location and time. The taxi distribution (in blue) un-
derestimates the loop distribution (in green) and the underestimation is variable. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 2. Results of the feed-forward artificial neural network model implementation. Regression plot of a partial set of modeled traffic volumes versus corresponding measured traffic
volume for the (a) training phase (R? = 96%), (b) validation phase (R? = 93%), (c) testing phase (R? = 92%) and (d) overall model (R? = 94%). A sub-sample of points are presented for

clarity.

pollutant types and vehicle types. The emission rate constants (e.g.,
f1,f2, etc.) are specified for each pollutant type and vehicle type, and
were determined from emissions measurements of on-road
instrumented vehicles. These were determined for the car, heavy
duty vehicle (HDV, diesel) and bus (diesel) categories. A table
describing these emission rate constants are described in Int Panis
et al. (2006).

For each pollutant, the expected total emissions (in g) in the
specified vehicle network during the simulation period were
computed by:

E[TEX] = > E[TEf], (4)

leL

where L is the set of all road links in the network, and E[TE}‘] denotes
the total emissions (in g) of pollutant k on link L. The latter term in
Equation (4) is approximated by:

E[TE{‘] - E[ER""]E[T,]A,AT, (5)

where E[ER*!] denotes the expected emissions rate (in g/s) for link [
and pollutant type k, E[Tj] is the travel time on link [, 4; is the arrival
rate of vehicles to link [ and AT is the total simulation time. For a
given link | and pollutant type k, the term A AT approximated the
expected total demand over the time period of interest, while E
[ER*E[T;] approximated the expected emissions per vehicle. The

emissions computed for each road link were projected onto a map
of Singapore.

Emissions for the total motor vehicle population, represented by
general traffic patterns, across the road network of Singapore were
quantified. Emissions were estimated on a daily basis according to
Equation (5). In this scenario however, the arrival rates of vehicles
to each road link, A, were predicted using the traffic model
described in Section 2.3. Daily emissions were calculated for each of
five days of data available, and the mean of these five days was then
compared to mean daily emissions estimated by Streets and Lu
(2012).

2.5. Vehicle fleet composition

The emissions model took into consideration the estimated
composition of the vehicle fleet of Singapore. This was based on
information collected by the Land Transport Authority of Singapore
(LTA, 2015). The data-set yielded counts of the various categories of
motor vehicles within the overall transportation fleet i.e. Cars,
Taxis, Motorcycles, Goods and Other Vehicles, and Buses, and these
categories were further stratified by type of fuel used i.e. petrol,
diesel, petrol-electric, petrol-CNG, CNG and electric for each of the
respective categories of vehicle type. Data for the year 2011 were
used as this corresponded to our vehicle data-set (see Table 1 for
details).
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Table 1
Motor vehicle population in Singapore by category and type of fuel used for the year
2011. Figures exclude tax exempted vehicles for off-the-road use (RU plates).

3. Results
3.1. Spatial distribution of accelerations and predicted emissions

Fig. 3 shows counts of all valid acceleration data on each link on
the road network. Higher counts of valid accelerations were
concentrated in the Singapore Downtown Core area, at Changi In-
ternational Airport and some parts of Jurong, Bishan and Yishun. As
demonstrated in Section 2.3, the taxi data may be used to predict
general traffic on road segments, therefore counts of valid accel-
erations were proportional to the distribution of vehicles in the city,
and proportional to the number of accelerations of each road link.
Valid accelerations on each road link were utilized for the emis-
sions model. However, areas such as the Singapore Downtown Core
area and the vicinity of Changi International Airport which were
characterized by a relatively higher number of sample points of
acceleration than other areas. This may indicate a bias in the
dataset.

The spatial distributions of vehicle emissions computed for each
road link in Singapore are shown in Fig. 4. With regards emissions
related to specific parameters, we can see that for all of CO,, NOy,
VOC and PM, elevated levels were identified in a concentrated
number of locations in the Singapore Downtown Core area, south of
Newton and in Geylang. Elevated levels were also identified in the
area surrounding Changi International Airport, Bishan and Jurong
West.

The locations where predicted emissions were relatively higher
across Singapore can be identified for the four pollution parameters
of COy, NOy, VOC and PM. In terms of CO, emissions, the areas
which were identified as having relatively higher CO, output from
the vehicle fleet. Marina South and Raffles Place in the Downtown
Core area, the Harbour Front area, Jurong East, Clementi, Sin Ming
and an area close to the Seletar Reservoir in Yishun were identified.
In the east of Singapore, the area between Tampines and Changi

Cars Petrol 596,947
Diesel 346
Petrol-Electric 3786
Petrol-CNG 2642
CNG -
Electric 2
Total 603,723
Taxis Petrol 279
Diesel 23,880
Petrol-Electric 56
Petrol-CNG 2836
CNG -
Electric -
Total 27,051
Motorcycles Petrol 145,672
Electric 8
Total 145,680
Goods & Other Vehicles Petrol 9058
Diesel 136,076
Petrol-Electric 1
Petrol-CNG 14
CNG 8
Electric 1
Diesel-Electric -
Total 145,158
Buses Petrol 194
Diesel 16,433
Petrol-Electric -
Petrol-CNG 8
CNG 14
Electric 3
Total 16,652
]
-
T
| ot
3
_ Jurong WQ_s!__'

e — e Kilometers
0 15 \& 6 9 12

[ <=
] 30-100
[ ] 100-200

N [ ] 200-400
A B > 400

Fig. 3. Spatial distribution of the number of valid accelerations in Singapore on the 23rd February 2011. Locations where relatively higher numbers of valid accelerations are
observed in the vicinity of the Singapore Downtown Core area and the Changi International Airport in the east.
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Fig. 4. Spatial distributions of predicted daily emissions from the vehicle fleet for each road link for the parameters of (a) CO, (tonnes/day), (b)

, (b) NOy (tonnes/day), (c) VOC (g/day),
and (d) PM (g/day) in Singapore on the 23rd February 2011. Locations of relatively high-emissions, are observed in the Singapore Downtown Core area in the south-center of
Singapore and in other locations throughout the island.

International Airport was identified as having relatively higher CO,
emissions than other areas. The Bukit Timah Road - Whitley Road
Intersection was selected as having relatively higher CO, emissions
as were the busy areas Novena, Newton, Somerset, Dhoby Ghaut
(north) and Farrer Park which are located north of the central re-
gion of Singapore.

Relatively higher levels of NOy emissions were predicted in the
Downtown Core Area such as in Chinatown, Outram Park, Clarke

Quay and Raffles Place. The Chin Swee Tunnel - Havelock Road
intersection area was also identified. North of Dhoby Ghaut, City
Hall, on the Central Expressway side of Fort Canning Park and Little
India were areas where relatively higher NOy emissions were pre-
dicted. Connected to these, Somerset and Orchard were areas with
relatively higher NOx emissions. The Moulmein Flyover, the Jalan
Bukit Merah - Lower Delta Road Intersection (located west of the
Downtown Core area), the Kallang-Paya Lebar Expressway (KPE) -
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Fig. 4. (continued).

Nicoll Highway Intersection (located east of the Downtown Core
area), and further east, an area in the vicinity of Changi Interna-
tional Airport was also identified. For VOC emissions, the areas of
elevated emissions were observed to be centrally located with a
few areas scattered in other parts of Singapore. Located centrally
were Orchard Road, the River Valley Road - Zion Road Intersection,

Outram Park, Marina South, Suntec City and Little India. Moving

east from the urban central region - Selegie, Lavender, Kallang,
Geylang, and further east, the Layang Avenue - Pasir Ris Drive 1

Intersection and the Pan Island Expressway (PIE) - Tampines
Expressway (TPE) Intersection near Changi International Airport
were identified as hotspots for VOC emissions. North-east of the
central region was Tao Payoh and further north was Sin Ming
(Yishun area). Westwards from the Downtown Core areas were
Bukit Merah, the Hollande Road - Farrer Road Intersection. Further
west was Clementi, Jurong East and Bukit Batok. In the north-west

of Singapore, Choa Chu Kang was observed to have relatively higher
levels of VOC.

359
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Table 2
Modeled emissions for the taxi fleet and the proportion of modeled taxi emissions in the estimated total motor vehicle population emissions, for each of four air pollutant
parameters.
Modeled emissions taxi fleet Proportion of modeled taxi emissions in the total motor vehicle population emissions
(tonnes/day) %
Mean (SD) Mean (SD)
o, 2176.6 (1023.5) 7.9 (3.0)
NOy 11.9 (2.8) 7.6 (1.4)
voC 03(0.2) 32(1.7)
PM 03(0.2) 3.5(1.6)

For PM emissions, all the areas of relatively highest predicted
emissions were concentrated in the Downtown Core area with
some areas identified to the east of it. The areas identified included
the areas of Outram Park, Chinatown, Raffles Place and Clarke Quay.
South of these the Tajang Pagar area near Keppel Road was chosen
and slightly north of these, the Havelock Road - Outram Road
Intersection. River Place near the Chin Swee Tunnel and the Central
Expressway side of Fort Canning Park were identified. On the east of
the Downtown Core area were Bugis, Beach Road and Geylang. On
the west side of the Downtown Core area; the Jalan Bukit Merah -
Lower Delta Road Intersection was included in the selection of areas
determined to have increased PM emissions relative to the rest of
the island. Other areas were the extent of Orchard Road, Farrer Park
and Balestier.

3.2. Comparison of predicted emissions for the total motor vehicle
population

Total emissions of each pollutant parameter for the vehicle fleet
studied were computed for each day and the means determined are
presented in Table 2. The mean daily CO; and NOy emissions
determined were respectively representative of 7.9% (+3%) and 7.6%
(+1.4%) of emissions estimates for the total motor vehicle popula-
tion of Singapore (including the previously calculated vehicle fleet
emissions). For VOC and PM, the proportions were smaller, whereas
the total daily emissions computed were approximately 3.2%
(+1.7%) and 3.5% (+1.6%) (respectively) of total motor vehicle
population emissions (see Table 2 for details).

Daily emissions from the total motor vehicle population were
then computed for one week and compared to other transportation
emissions estimated by Streets and Lu (2012) (see Table 3). The
overall emissions levels computed for the entire fleet were com-
parable to those attained from Streets and Lu (2012). Whereas our
analyses predicted mean daily emissions from the entire motor
vehicle population to be 27,656 (+3049) tonnes for COy, Streets and
Lu computed 24,417 tonnes/day. Therefore, the relative difference
in emissions was found to be 15% (+1.7%). For NOx we determined
total daily emissions to be 155 (+33.1) tonnes/day while Streets and
Lu computed 121 tonnes/day, and this corresponded to a relative
difference of 24% (+4.9%). A larger disparity was observed in the

case of VOC. We predicted total emissions to be 9.7 (+2.6) tonnes/
day whereas Streets and Lu determined a value of 21.6 tonnes/day.
This is equivalent to a relative difference of —49% (+12.3%). Finally,
for PM we computed 8.5 (+3.4) tonnes/day while Streets and Lu
predicted 14.1 tonnes/day. Similar to VOC, we calculated a relatively
lower value to Streets and Lu by 39% (+15.5%), but exhibiting a
larger uncertainty.

4. Discussion

Recent advances in urban computing and the availability of large
transportation GPS datasets have presented new opportunities for
real-time transportation and emissions modeling. Transportation
and emissions modeling conducted in previous studies have been
limited by coarsely resolved predicted or measured traffic infor-
mation. In this study, we analyzed GPS traces from a fleet of over
15,000 vehicles in Singapore with the aim of using this information
to make predictions of emissions in high spatial resolution
throughout the study domain. The instantaneous velocities and
accelerations of vehicles, which were extracted in high spatial and
temporal resolution, were inputted into a microscopic emissions
model. The air pollution emissions of CO,, NOy, VOC and PM were
thus quantified. The spatial distributions of the emissions were
examined and this enabled highly localized areas of elevated
emission levels to be identified. The study demonstrated how
instantaneous drive cycles can be used to predict vehicular
pollutant emissions and this forms an important component of the
urban emissions inventory.

An analyses demonstrated that the taxi data could be used to
predict overall traffic volumes on road segments throughout the
road network. Emissions from the taxi fleet and then the total
motor vehicle population were therefore predicted for the study
domain of Singapore. The subsequent emissions levels computed
for the entire motor vehicle population was comparable to those
attained from Streets and Lu (2012). Whereas the modeled values
are in the same order of magnitude for each pollutant parameter,
the results likely varied due to the different emissions modeling
methods employed. Further to this, in the case of Streets and Lu
(2012) estimates of emissions from the transportation sector are
from the year 2012, while our data are representative of one week

Table 3
Comparison of the mean daily emissions predicted for the total motor vehicle population of Singapore to estimated ground transportation emissions attained from Streets and
Lu (2012).
Predicted total motor vehicle population emissions Streets and Lu (2012) Range of ratios Average difference (SD) (%)
(tonnes/day) (tonnes/day)
Mean (SD) Mean
CO, 27,656 (3049) 24,417 (1.1-1.3) 15.1 (1.7)
NOy 155.2 (33.1) 121 (1.0-1.6) 24.1 (4.9)
vocC 9.7 (2.6) 21.6 (0.4—-0.7) —49.3 (12.3)
PM 8.5(3.4) 14.1 (0.4—-0.8) —38.7 (15.5)
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of data for the year 2011. Predicted emissions computed for CO; and
NOy were higher than VOC and PM. The reason for this is that the
emissions function parameters used are higher for CO; and NOy.
CO, and PM emission estimates are more sensitive to vehicle ve-
locities than VOC and NOx which are more sensitive to accelera-
tions (Int Panis et al., 2006).

This paper presents a novel methodology for making instanta-
neous emission modeling compatible with microscopic traffic
patterns (measured on a second by second basis). Previous studies
have focused on the microscopic traffic simulation coupled with
microscopic emissions modeling (Int Panis et al., 2006) or a com-
bination of macroscopic and microscopic traffic simulation com-
bined with microscopic emissions modeling (Osorio and Nanduri,
2015). However, to the authors knowledge, a study investigating
measured microscopic vehicle movement (measured on a second
by second basis using GPS) in tandem with microscopic emissions
modeling has not been completed successfully for a substantially
sized vehicle fleet and study domain, rather have been limited to
small ad hoc deployments.

The methodology described in this study has the potential to
inform environmental policy related to transportation in urban
areas. With the framework proposed, where appropriate data is
available, responsive and adaptive strategies could be implemented
should the emissions model be applied using real-time GPS data.
The methodology described demonstrated the potential for linking
GPS measured vehicle movements directly with microscopic
emissions models (based on the instantaneous driving speed and
acceleration) for quantifying traffic emissions. Although the
computation of emissions is clearly a useful application, it is in the
implementation and evaluation of real-time, technology-based
environmental policies related to transportation where its appli-
cation would be most beneficial. Technologies for monitoring and
controlling vehicle velocities include Intelligent Speed Adaption
(ISA) systems (Duynstee et al., 2001; Int Panis et al., 2006). ISA
systems are electronic systems installed in vehicles, which utilize
GPS navigation to evaluate the vehicle location and apply appro-
priate speed limits on specific road segments ISA systems com-
bined with an appropriate real-time emissions model could be
utilized for minimizing emissions and fuel consumption in urban
road networks in the future.

Environment related transportation policies such as restricting
vehicles in a city-center zone or restricting odd/even number plates
in urban regions have been adopted in a number of cities in recent
years (Fensterer et al., 2014; Holman et al., 2015). Whereas these
have helped in the reduction of congestion and pollution levels in
urban centers, more beneficial approaches may be based on the
detection of the specific, fixed positions where emissions take
place, rather than in substantial urban regions. With the dynamic
fine grain emissions inventory presented in this study, it may
become feasible to target air pollution emissions mitigation efforts
in a far more direct manner. The health and economic benefits of
reducing air pollution emissions across various sectors including
transportation, thereby improving air quality, has been quantified
in many reports. For example, the US EPA computed the costs for
the implementation of the 1990 Clean Air Act to be about 65 million
dollars, with a potential benefit reaching 2 trillion dollars from
1990 to 2020, potentially avoiding approximately 230,000 prema-
ture deaths in 2020 (USEPA, 2011).

For the first time, the data collected allow us to see an emission
inventory not as something static which only changes from one
road segment to the other, but which has more detailed charac-
teristics with spatiotemporal variation. This enables a better esti-
mate of the impact of pollution on the urban population which also
exhibits variable spatial and temporal distribution profiles over the
course of the day (Nyhan et al., forthcoming). The advantage of the

proposed method is that by interrogating and interpreting easily
accessible data from existing fleets (such as vehicle or bus services),
considerable information regarding air pollution emissions can be
obtained at a low cost and minimal effort in cities. Such a system
can be applied in other cities, perhaps through government
encouragement to make transportation GPS data available. This
information may be of considerable value in determining the most
appropriate locations of where to take action to reducing emissions
and subsequently air pollution concentration levels in cities. This
type of data could also be used to compute fine-grained fuel con-
sumption patterns from the transportation sector.

This approach we adopted for predicting emissions has some
limitations. In the development of the emissions model functions,
Int Panis et al. (2006) primarily used measurements made in urban
traffic (with low speeds) for determining functional forms and the
variables in the emissions equations used in this study. This is
considered sufficient for the purposes of evaluating the effects of
speed management in urban networks. It is possible that the
emission functions for highway traffic (at higher speeds) differ for
those of urban traffic and the traffic on highways was insufficiently
represented in the functions used. The emissions model did not
allow for the specific model or age of the vehicles to be considered
in computations either. Some additional measures would also be
needed to verify the quality of the acceleration data obtained from
GPS traces. There are inherent inaccuracies associated with GPS
measurements, which however are compensated by the large vol-
ume of data collected. There is a necessity to connect the move-
ments of the subset of vehicles with the movement of all the
vehicles in the city. For this, calibrations parameters could be
applied based on the sampling of the available vehicles versus the
total number of vehicles. Finally, additional work would be needed
to link the emissions predicted for various parameters to local
measured air pollution concentration levels. A future study by
these authors will therefore examine the relationship between
predicted emissions using the methodology described herein this
study, and measured or modeled values of air pollution
concentrations.

This methodology described in this paper may be replicated in a
number of cities worldwide, as GPS traces from vehicles become
increasingly available. Vehicle fleet operators can do a major public
service by providing GPS data for research, in particular for pre-
dicting emissions and other information relevant to environmental
health from it. This information may be used for designing air
pollution intervention strategies (long-term, short-term, respon-
sive and adaptive) for the protection of human health and well-
being.

5. Conclusions

Through analyzing GPS data from a large transportation fleet in
Singapore, fine grained emissions were estimated in high spatial
resolution. The emissions model was based on the inputs of velocity
and acceleration parameters extracted from the data. Air pollution
emissions related to CO, NOx, VOC and PM were thereby quanti-
fied. The spatial distributions of the emissions were investigated
thereby enabling highly localized areas of relatively higher emis-
sions levels to be identified. This study also shows how the
instantaneous drive cycles can be applied in the estimation of the
overall emissions from the transportation sector within the study
area.
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