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Abstract 21 

Air pollution related to traffic emissions pose an especially significant problem in cities; this 22 

is due to it’s adverse impact on human health and well-being. Previous studies which have 23 

aimed to quantify emissions from the transportation sector have been limited by either 24 

simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of 25 

urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory 26 

data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air 27 

pollution emissions for Singapore. This novel approach enabled the quantification of 28 

instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the 29 

basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), 30 

volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus 31 

estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-32 

temporal precision not possible with previously used methods for estimating emissions. 33 

Relatively higher emissions areas were mainly concentrated in a few districts that were the 34 
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Singapore Downtown Core area, to the north of the central urban region and to the east of it. 35 

Daily emissions quantified for the total motor vehicle population of Singapore were found to 36 

be comparable to another emissions dataset. Results demonstrated that high-resolution spatio-37 

temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly 38 

localized areas of elevated acceleration and air pollution emissions in cities, and may become 39 

a complement to traditional emission estimates, especially in emerging cities and countries 40 

where reliable fine-grained urban air quality data is not easily available. This is the first study 41 

of its kind to investigate measured microscopic vehicle movement in tandem with 42 

microscopic emissions modeling for a substantial study domain.  43 

 44 

Keywords: air quality, transportation, emissions, microscopic emissions model, microscopic 45 

vehicle movement.  46 

  47 
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1. Introduction 48 

 49 

 50 

With mass urbanization happening at an unprecedented scale, urban air quality is becoming 51 

an issue of global concern (WHO, 2014). Growth in populations, traffic, industrialization and 52 

energy usage have led to increased air pollution levels and subsequent public health effects at 53 

the urban, regional and global scale (Akimoto, 2003; Molina et al., 2004; Gurhar et al., 2010) 54 

The World Health Organization estimates that ambient air pollution leads to approximately 55 

3.7 million premature deaths annually worldwide, with South-East Asia and the Western 56 

Pacific Regions having the largest air pollution-related health burden (WHO, 2014).  57 

 58 

The adverse impact of air pollution exposure on human health is well documented in the 59 

literature (WHO, 2014). Epidemiological studies have quantified the relationship between 60 

adverse health effects and both long- and short-term exposure to air pollution (Bell et al., 61 

2004; Jerrett et al., 2005; Laden et al., 2006; Lewtas, 2007; Krewski et al., 2009; Nyhan et al., 62 

2014a; Nyhan et al., 2014b). In assessing the impact of air pollution on mortality in the 63 

United States, Caiazzo et al. (2013) reported that the largest sector contributor of pollutant-64 

related mortalities is road transportation, causing approximately 53,000 PM2.5-related deaths 65 

and approximately 5000 ozone-related deaths per year. These figures corresponded to 66 

premature deaths from cardiovascular diseases and lung cancer due to long-term exposure to 67 

PM2.5 (where PM2.5 refers to the particulate matter fraction which is less than 2.5µm in 68 

aerodynamic diameter).  69 

 70 

Traditional methods for monitoring urban air quality employ discrete measurement stations 71 

which sample atmospheric conditions at specific sites throughout a city. Networks vary both 72 

in size and scale. The London Air Quality Network has over 50 sites classified as roadside, 73 

background, suburban and industrial that are dispersed throughout the whole metropolitan 74 

area (Laxen et al., 2003). Singapore, which is the focus of this study, has 14 high-grade 75 

stations operated by the National Environment Agency, gathering data throughout the island 76 

(NEA, 2015). Traditional approaches to monitoring air quality have several limitations, 77 

including significant investment required to set up and maintain the measurement networks. 78 

Furthermore, as air quality can exhibit large variations over a relatively small scales (Britter 79 

and Hanna, 2003), sampling biases can be introduced which make the assessment of human 80 

exposure and the sources of pollutants difficult (Vardoukalis et al., 2005). As a result of this, 81 
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municipal air quality monitoring is often supplemented by air quality models such as the 82 

AERMOD modeling system (USEPA, 2009) and the ADMS Urban model (CERC, 2015) to 83 

improve the spatial and temporal resolution of air pollution estimates. Sparsely located air 84 

quality monitors are limited in their usefulness for accurately determining the locations of air 85 

pollution sources. Therefore, air quality monitoring using distributed networks of sensors has 86 

gained traction as sensors are becoming smaller, less expensive yet more reliable (Chong et 87 

al., 2003; Burke et al., 2006; Cuff et al., 2008; Paulos et al., 2009; Kumar et al., 2015), 88 

providing a wealth of high spatial resolution air quality information.  89 

 90 

The availability of large transportation and mobility datasets from sensors, Global Positioning 91 

System (GPS)-enabled devices, along with improvements in methods and computational 92 

facilities for analyzing these have led to advancements in the field of urban computing 93 

research in recent times. So-called opportunistic sensing which is the use of data that is 94 

collected for one purpose but can be reused for another one (Campbell et al., 2008), has 95 

proved useful in many research studies. Examples include using various anonymized or 96 

aggregated spatio-temporal datasets created by different aspects of human activity, such as 97 

cell phone data (Gonzales et al, 2008; Sobolevsky et al, 2013; Hoteit et al, 2014; Kung et al, 98 

2014; Pei et al, 2014; Grauwin et al, 2014) or vehicle GPS traces (Kang et al, 2013). One 99 

such example of opportunistically utilizing vehicle GPS traces is a recent study by Santi et 100 

al., (2014) where the economic and environmental benefits of vehicle pooling in New York 101 

were quantified based on the analyses of a taxi GPS dataset consisting of 150 million trips.  102 

 103 

Emissions from on-road motor vehicles constitute one of the largest contributions to air 104 

pollutants such as carbon monoxide, nitrogen dioxide, ozone, selected volatile organic 105 

compounds and fine particulates (Molina and Molina, 2004), and also represent a factor in the 106 

spatial variability of air quality in urban areas (Fecht et al., 2016). Vehicle emissions have 107 

typically been estimated with the use of either measured (through loop detectors or similar) or 108 

modeled (using a transport simulator) traffic data. Based on this information, emission factors 109 

are commonly used to convert traffic loads into emissions (NARSTO, 2005). Emission 110 

factors vary from location to location, and depend on the vehicle model and road conditions 111 

(Zhang and Morawska, 2002; North et al., 2006). The application of emission factors to 112 

traffic loads is unable to account for real driving conditions as they happen on the road 113 

(Samuel et al., 2002). Thus, as an alternative, different vehicles models with different load 114 

factors are often used as probes, whose emissions (and eventually the emission of nearby 115 
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vehicles) are measured on the road (Canagaranta et al., 2004; Shorter et al., 2005). The 116 

aforementioned approaches do not allow the high resolution spatiotemporal mapping of 117 

emissions as they do not take into account the ‘drive cycle’ which is the description of a 118 

vehicle’s velocity over time. The drive cycle allows the precise determination of consumption 119 

and hence emissions (Mantazeri et al., 2003; Int Panis et al., 2006). In the widely used 120 

MOBILE Model (USEPA, 2012), only 14 different drive cycles are used; however, these are 121 

only expressed as average speed. Many studies have examined the impact of different vehicle 122 

modes (idling, moving and accelerating) on the release of pollutants. In a study by Frey et al., 123 

(2003) average emissions were observed to be five times greater during periods of 124 

acceleration for hydrocarbons and carbon dioxide, and reached ten times as much for nitric 125 

oxide and carbon monoxide compared with levels found in an idling vehicle. Similarly, 126 

ultrafine particulates released whilst a vehicle is accelerating have also been shown to 127 

increase significantly (Fruin et al., 2008). Hence, there is a need for the use of more detailed 128 

drive cycles, including velocity and acceleration parameters resolved in high spatial and 129 

temporal resolution, in modeling emissions from transportation.  130 

 131 

Many studies have led to the development of models that consider variations in speed and are 132 

appropriate for instantaneous emission modeling. These include the Comprehensive Modal 133 

Emissions Model developed at the University of California (An et al., 1997; Barth et al., 134 

2006) and others (e.g. Rakha et al., 2004; Pelkmans et al., 2004; El-Sgawarby et al., 2005). 135 

Along with this, significant effort has been devoted to the use of micro-simulation methods 136 

for transportation modeling on road networks, for representing real-time, behavior-based 137 

policies (e.g. Ben-Akiva et al., 1997; Hu and Mahmassani, 1997; Liu et al., 2006). Individual 138 

driver behavior and individual vehicle's real-time space-time trajectories are explicitly 139 

represented through traffic micro-simulation models and these produce detailed vehicle 140 

operation, instantaneous speed and acceleration of vehicles that are necessary for microscopic 141 

emissions models. A review by Fontes et al., (2015) examined combining various micro-142 

simulation tools for assessing the impacts of road traffic on the environment, and identified 143 

best practices which would aim to minimize errors in combining these. Int Panis et al., (2006) 144 

presented a methodology for making instantaneous emission modeling compatible with 145 

traffic micro-simulation models. In particular, the emissions caused by acceleration and 146 

deceleration of vehicles were modeled based on microscopic traffic simulation model 147 

integrated with an instantaneous emission model. The functions developed by Int Panis et al., 148 

(2006) were incorporated into a study addressing optimum mitigation strategies for urban 149 
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transportation emissions by Osorio and Nanduri (2015) where a combination of macroscopic 150 

and microscopic traffic simulators and emissions models were employed.  151 

 152 

Recent developments in the field of vehicle emissions have seen the uptake of cell phones 153 

and their built in sensors as on-board diagnostic systems - using the data gathered from the 154 

GPS and accelerometer to monitor the drive cycle and hence consumption and emissions 155 

(Thiagarajan et al., 2009). These approaches have been mostly confined to single or small 156 

numbers of vehicles. In this study, however, it is intended to extend an emissions model to a 157 

large vehicle fleet using GPS data collected. Intelligent Speed Adaption (ISA) systems are 158 

technologies which incorporate GPS navigation to apply speed limits to cars on specific road 159 

areas. Systems for monitoring and controlling vehicle velocities include ISA systems 160 

(Duynstee et al., 2001; Int Panis et al., 2006). These could also be used for reducing 161 

emissions and fuel consumption on road networks, but require fine-grained emissions 162 

predictions based on real-time GPS data.  163 

 164 

The purpose of this study is to use data routinely captured by existing transportation networks 165 

and vehicle fleets to predict vehicular emissions in high spatial resolution. For this, GPS 166 

measurements gathered by a large taxi fleet in Singapore would be analyzed. Parameters 167 

representative of vehicle drive cycles would then be characterized in high spatial and 168 

temporal resolution at points throughout the road network. A microscopic emissions model 169 

would be implemented to predict the emissions of carbon dioxide (CO2), nitrogen oxide 170 

(NOx), volatile organic compounds (VOCs) and particulate matter (PM) throughout the study 171 

domain, where particulate matter here refers to total suspended particles. Highly localized 172 

areas of elevated emissions would thereby be identified, with a higher spatiotemporal 173 

precision than commonly used methods. This is the first study to implement a microscopic 174 

emissions model using measured microscopic vehicle trajectory data for an entire urban 175 

region.  176 

  177 
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2. Methodology 178 

 179 

 180 

2.1. Overview of methodology 181 

 182 

In order to develop an emissions inventory, GPS trajectory data from 15,236 taxis were 183 

analyzed. From this, the instantaneous parameters of velocity and accelleration were derived 184 

and used as inputs for a microscopic emissions model. Emissions of CO2, NOx, VOCs and 185 

PM were predicted across the road network of Singapore using this model. An analyses was 186 

completed which compares the taxi data used to the overall traffic on the road network in 187 

Singapore. Following this, emissions from the remainder of the total motor vehicle 188 

population of Singapore were also estimated. The results were compared to  emissions 189 

estimates produced to those attained from the National Aeronautical and Space Agency 190 

(Streets and Lu, 2012).  191 

 192 

 193 

2.2. Study domain and GPS data processing 194 

 195 

The study domain included the island of Singapore, which covers approximately 718 km2. 196 

Singapore has a population of 5,469,700 people (Singapore Department of Statistics, 2014), 197 

therefore has an average population density of 7,618 persons per km2.  198 

 199 

Our analysis used vehicle GPS traces collected over a period of one week from 15,236 taxis 200 

in Singapore. The raw data included the following parameters: identification number of the 201 

vehicle, a timestamp of when each location measurement was performed, the corresponding 202 

latitude and longitude defining the position of the vehicle. The data samples were collected at 203 

varying temporal intervals every few seconds. Our data was collected from an undisclosed 204 

vehicle fleet operator, which operates over the majority of the island of Singapore on a 24-205 

hour basis. Each vehicle contained within the fleet transmits information including its 206 

identification number, location and status at various intervals to a central operations base. The 207 

dataset contained over 120 million vehicle-GPS samples measured from the 21st February 208 

2011 to the 27th February 2011.  209 

 210 
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The GPS trace data was utilized to infer both the location of each vehicle, its velocity and its 211 

acceleration. In applying a data cleaning process to the dataset, erroneous GPS points which 212 

fell outside the boundary of Singapore or which have an unreasonable distance from its 213 

previous location at a given time interval (distance/time ≤ 150 km/h) were eliminated. The 214 

instantaneous velocities of vehicles were determined based on the time and distance between 215 

geo-referenced points. The data was filtered so as to only examine changes in velocity that 216 

occurred over short temporal ranges, where two consecutive data points were separated by no 217 

more than 5 seconds as intervals greater than this are unable to depict the microstructure of 218 

the acceleration profile. A secondary filtering process was applied to the data to remove 219 

errors attributed to GPS measurements, as these may be affected by the multi-path effect 220 

within urban canyons (Parkinson, 1996). An outlier filter was used that removed all the 221 

acceleration values that exceeded 10 ms-2 as these values are generally not attainable in an 222 

average car. The normative driving cycle, used to homologate vehicles emissions are 223 

characterized by a maximum acceleration of 1.5 ms-2 for FTP-72 and 4 ms-2 for LA92 224 

(Guzella and Sciarreta, 2005; Metric Mind Corporation, 2012), therefore sampling points 225 

with an acceleration value between 0.5 and 10 m s-2 were used in this study.  226 

 227 

 228 

2.3. Comparison of taxi fleet and total traffic 229 

By applying the above filters, the distribution of the sampling intervals of the 15,236 taxis, 230 

indicate that only 7.71% of the logged data has a sampling interval of less than 5 seconds as 231 

well as a valid acceleration value. This indicates that the majority of vehicles demonstrate 232 

intermittent data logging at intervals greater than 5s. The spatial distribution of the valid 233 

samples was correlated with a co-efficient of determination of 0.75 to the spatial distribution 234 

of the raw vehicle-GPS points. In order to examine the spatial distributions of GPS points, the 235 

city was divided into road links. The valid accelerations of all the vehicles were then 236 

attributed to one of the road links based on their latitude and longitude data, and were 237 

projected onto a map of Singapore.  238 

 239 

Aslam et al., (2012) demonstrated that vehicular GPS taxi network data can be used to infer 240 

general traffic patterns in Singapore. Aslam et al., (2012) used data from the same taxi fleet as 241 

used herein this study. Measured traffic data (i.e. counts of vehicles on road links per time 242 

intervals) were obtained through loop count data from the Land Transport Authority (LTA) of 243 

Singapore. By examining the fraction of road segments the taxi fleet covers during workdays, 244 
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it was concluded that 700 taxis were sufficient to cover 70% of the roads for the majority of 245 

the day’s 1-hour time windows, with the exception of those in the middle of the night when 246 

vehicle numbers are sparse. Further to this, Aslam et al., (2012) also observed that 2000 taxis 247 

were sufficient to cover 90% of the total loop detector locations during a period of 15 minutes 248 

in the morning (from 08:00~08:15) on all workdays. Similarly, we compared our taxi fleet 249 

data to measured traffic data obtained from loop detectors operated by Singapore’s LTA for 250 

the same time period as our study. To achieve this, the taxi data was synchronized with the 251 

loop detector data, which was aggregated every 15 minutes. The time series of GPS points for 252 

taxis were first matched to road links and then segments on the road network of Singapore. 253 

The number of taxis on road segments where loop detectors are located, were counted every 254 

15 minutes. These counts were then compared to the loop counts which were regarded as the 255 

ground truth for traffic conditions. Figure 1 shows the taxi and loop detector count data for 15 256 

randomly selected Singapore road segments. The taxi distribution tended to underestimate the 257 

loop distribution and this underestimation was variable across road segments. On each road 258 

link, a bias was observed which varied throughout the day, however this bias was relatively 259 

consistent across days.  260 

 261 

 262 

Figure 1. Distribution of traffic volumes (i.e. number of vehicles per road segment) on 15 263 

randomly selected road segments for the 23rd February 2011. The x-axis includes 15 road 264 

segments including a point for every 15 minutes during the 24-hour day. The y-axis 265 

represents the percentage of traffic at that location and time. The taxi distribution (in blue) 266 

underestimates the loop distribution (in green) and the underestimation is variable.  267 

 268 
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For inferring general traffic patterns, an artificial neural network model was employed, as has 269 

been used in another study for predicting traffic volumes on road links (Moretti et al., 2015). 270 

The model utilized was a simple corrective model for inferring vehicle distribution as 271 

detected by loop detectors from vehicle distribution as determined by the taxi fleet. A 2-layer 272 

feed-forward network was implemented, with a tan-sigmoid transfer function in the hidden 273 

layer and linear transfer function in the output layer. The model was run for 500 road 274 

segments. In determining the performance of the model, a linear regression between modeled 275 

traffic volume and the corresponding targets of measured traffic volume was conducted. 276 

Figure 2 shows the results of learning for trained model for a sample of data points. As there 277 

is a strong association between the modeled and measured traffic volumes, this demonstrates 278 

that the taxi fleet data may be used to predict general traffic on specific road segments, and 279 

the results were similar across the road network of Singapore.   280 

 281 

 282 

Figure 2. Results of the feed-forward artificial neural network model implementation. 283 

Regression plot of a partial set of modeled traffic volumes versus corresponding measured 284 

traffic volume for the (a) training phase (R2=96%), (b) validation phase (R2=93%), (c) tesing 285 
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phase (R2=92%) and (d) overall model (R2=94%). A sub-sample of points are presented for 286 

clarity.  287 

 288 

2.4. Microscopic emissions model 289 

 290 

A microscopic emissions model was implemented and this computed the instantaneous air 291 

pollution emissions associated with CO2, NOx, VOCs and PM. The emissions model was 292 

based on a model developed by Int Panis et al., (2006), and has been adopted by Osorio and 293 

Nanduri (2015). The model utilizes instantaneous velocity and accelerations derived from the 294 

GPS dataset to compute emissions. The emission rate at a given time-instant � is given in the 295 

following equation:  296 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ���� ��(�) + ���

� ��(�)� + ���� ��(�)��(�)],     (1) 297 

where � is the pollutant type, i.e. �	 ∈ {CO2, NOx, VOC, PM}, ��(�) is the instantaneous 298 

speed of vehicle � at time � (in m/s), ����(�) is the instantaneous emissions rate of pollutant 299 

� (in g/s), ��(�) is the instantaneous acceleration of vehicle � at time � (in m/s2), ���
�  is the 300 

lower limit of emission rate for each pollutant type (in g/s), and ���
� , ���

� , ���
� , ���� , ���

� 	 and 301 

���
� 	are the emission rate constants specific to each vehicle and pollutant type. Equation (1) 302 

holds for CO2 and PM emissions. For NOx and VOC emissions, the emissions rate 303 

coefficients differ depending on whether the vehicle is in acceleration or deceleration mode. 304 

If ��(�) ≥ 	−0.5	
/$, then  305 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ��(�)�

� ��(�) + ��(�)�
� ��(�)� + ��(�)�

� ��(�)��(�)],	(2)	306 

Otherwise, if ��(�) < 	−0.5	
/$, then 307 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ��(�)�

� ��(�) + ��(�)�
� ��(�)� + ��(�)�

� ��(�)��(�)],	(3)	308 

The lower limit of the emissions rate ��	is fixed to zero for all pollutant types and vehicle 309 

types. The emission rate constants (e.g., ��, 	��, etc.) are specified for each pollutant type and 310 

vehicle type, and were determined from emissions measurements of on-road instrumented 311 

vehicles. These were determined for the car, heavy duty vehicle (HDV, diesel) and bus 312 

(diesel) categories. A table describing these emission rate constants are described in Int Panis 313 

et al., (2006).  314 
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For each pollutant, the expected total emissions (in g) in the specified vehicle network during 315 

the simulation period were computed by: 316 

�[(��] = ∑ �[(�*
�]*	∈	+ ,	 	 	 	 	 	 (4)	317 

where - is the set of all road links in the network, and �.(�*
�/	denotes the total emissions (in 318 

g) of pollutant � on link 0. The latter term in Equation (4) is approximated by: 319 

�.(�*
�/ = �[���,*]�[(*]1*∆(,	 	 	 	 	 (5)	320 

where �[���,*] denotes the expected emissions rate (in g/s) for link 0 and pollutant type �, 321 

�[(*] is the travel time on link 0, 1* is the arrival rate of vehicles to link 0 and ∆( is the total 322 

simulation time. For a given link 0 and pollutant type	�, the term 1*∆( approximated the 323 

expected total demand over the time period of interest, while �[���,*]�[(*] approximated the 324 

expected emissions per vehicle. The emissions computed for each road link were projected 325 

onto a map of Singapore.  326 

 327 

Emissions for the total motor vehicle population, represented by general traffic patterns, 328 

across the road network of Singapore were quantified. Emissions were estimated on a daily 329 

basis according to Equation (5). In this scenario however, the arrival rates of vehicles to each 330 

road link, 1*, were predicted using the traffic model described in Section 2.3. Daily emissions 331 

were calculated for each of five days of data available, and the mean of these five days was 332 

then compared to mean daily emissions estimated by Streets and Lu, (2012).  333 

 334 

2.5. Vehicle fleet composition 335 

 336 

The emissions model took into consideration the estimated composition of the vehicle fleet of 337 

Singapore. This was based on information collected by the Land Transport Authority of 338 

Singapore (LTA, 2015). The data-set yielded counts of the various categories of motor 339 

vehicles within the overall transportation fleet i.e. Cars, Taxis, Motorcycles, Goods and Other 340 

Vehicles, and Buses, and these categories were further stratified by type of fuel used i.e. 341 

petrol, diesel, petrol-electric, petrol-CNG, CNG and electric for each of the respective 342 

categories of vehicle type. Data for the year 2011 were used as this corresponded to our 343 

vehicle data-set (see Table 1 for details).  344 

 345 
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Table 1. Motor vehicle population in Singapore by category and type of fuel used for the year 346 

2011. Figures exclude tax exempted vehicles for off-the-road use (RU plates).  347 

Cars Petrol 596,947 
Diesel 346 
Petrol-Electric 3,786 
Petrol-CNG 2,642 
CNG - 
Electric 2 
Total 603,723 

Taxis Petrol 279 
Diesel 23,880 
Petrol-Electric 56 
Petrol-CNG 2,836 
CNG - 
Electric - 
Total 27,051 

Motorcycles Petrol 145,672 
Electric 8 
Total 145,680 

Goods & Other 
Vehicles 

Petrol 9,058 
Diesel 136,076 
Petrol-Electric 1 
Petrol-CNG 14 
CNG 8 
Electric 1 
Diesel-Electric - 
Total 145,158 

Buses Petrol 194 
Diesel 16,433 
Petrol-Electric - 
Petrol-CNG 8 
CNG 14 
Electric 3 
Total 16,652 

  348 
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3. Results 349 

 350 

 351 

3.1. Spatial distribution of accelerations and predicted emissions 352 

 353 

Figure 3 shows counts of all valid acceleration data on each link on the road network. Higher 354 

counts of valid accelerations were concentrated in the Singapore Downtown Core area, at 355 

Changi International Airport and some parts of Jurong, Bishan and Yishun. As demonstrated 356 

in Section 3.3., the taxi data may be used to predict general traffic on road segments, 357 

therefore counts of valid accelerations were proportional to the distribution of vehicles in the 358 

city, and proportional to the number of accelerations of each road link. Valid accelerations on 359 

each road link were utilized for the emissions model. However, areas such as the Singapore 360 

Downtown Core area and the vicinity of Changi International Airport which were 361 

characterized by a relatively higher number of sample points of acceleration than other areas. 362 

This may indicate a bias in the dataset.  363 

 364 

The spatial distributions of vehicle emissions computed for each road link in Singapore are 365 

shown in Figure 4. With regards emissions related to specific parameters, we can see that for 366 

all of CO2, NOx, VOC and PM, elevated levels were identified in a concentrated number of 367 

locations in the Singapore Downtown Core area, south of Newton and in Geylang. Elevated 368 

levels were also identified in the area surrounding Changi International Airport, Bishan and 369 

Jurong West.  370 

 371 

 372 

 373 

 374 

 375 
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 376 

Figure 3. Spatial distribution of the number of valid accelerations in Singapore on the 23rd 377 

February 2011. Locations where relatively higher numbers of valid accelerations are 378 

observed in the vicinity of the Singapore Downtown Core area and the Changi International 379 

Airport in the east.   380 

 381 

 382 

 (a)  383 


