
DEPARTMENT
COMPUTER SCIENCE

RESEARCH GROUP
NETWORKS, DATA, AND SOCIETY

Exploring Hedging Strategies for Multiple
Players in GeoGuessr:

A Study of Centrality in Geospatial
Networks

Thesis written by:
Christian H. P. Larsen
hecl@itu.dk

Supervisor:
Associate Professor

Michael Szell

June, 2023

Abstract

The online browser-based game GeoGuessr has increased in popularity over recent years
and professionals are going viral with videos displaying their extraordinary geolocating
abilities. Especially the multiplayer game mode intrigues from a computational opti-
mization perspective, as team members have to agree upon a hedging strategy for their
guesses. This thesis argues for and implements five different hedging strategies: Ran-
dom Guess in Network, Random Guess in Convex Hull, Divide and Conquer, Closeness
Centrality, and K-Means Clustering. All hedging strategies are tested with 100.000
iterations on the playing fields of Bornholm and Malta. Results show from the tests,
that the K-Means Clustering hedging strategy is superior to the other proposed hedging
strategies with up to 151.2% by a measure of the mean distance to the target node for
the winning guess. Furthermore, the thesis discusses the computational constraints of
the presented hedging strategies and the limitations of applying the k-means algorithm
to geospatial data. The application of in particular the algorithmic procedures of the K-
Means Clustering hedging strategy within domains apart from GeoGuessr is discussed,
and a customized version of it is used to solve the warehouse location problem.

Gratitude is offered to OpenStreetMaps
for providing data and enabling the

open source community.

I am thankful and grateful
for the trust and cooperation offered by

Associate Professor Michael Szell.

Thank you for the endless support
Marius, Henrik, Ursula & Kaj.

Contents

1 Introduction 8
1.1 GeoGuessr . 8
1.2 Motivation . 8
1.3 Research Questions . 9
1.4 Contributions . 10

2 Background 11
2.1 Related Work . 11

2.1.1 Utilization in Education . 11
2.1.2 Machine Learning Techniques . 11
2.1.3 Human Capabilities . 13
2.1.4 Voronoi Game . 13
2.1.5 Static Analysis . 13

2.2 OSM and Geospatial Data . 14
2.3 Centrality . 15

2.3.1 Measures of centrality . 15
2.3.2 Clustering of Centralities . 17
2.3.3 K-Means . 17

3 Methods and Implementation 23
3.1 Arena and Target . 23

3.1.1 Arenas: Bornholm and Malta . 23
3.1.2 Placement of the Target . 24

3.2 Random Guess in Network . 25
3.2.1 Motivation . 25
3.2.2 Implementation . 25

3.3 Random Guess in Convex Hull . 27
3.3.1 Motivation . 27
3.3.2 Implementation . 28

3.4 Divide and Conquer . 29
3.4.1 Motivation . 29
3.4.2 Implementation . 29

3.5 Closeness Centrality . 34
3.5.1 Motivation . 34
3.5.2 Implementation . 35

3.6 K-Means Clustering . 36
3.6.1 Motivation . 36
3.6.2 Implementation . 37

1

4 Results 41
4.1 Random Guess in Network . 41

4.1.1 Results . 41
4.1.2 Summary . 41

4.2 Random Guess in Convex Hull . 42
4.2.1 Results . 42
4.2.2 Summary . 42

4.3 Divide and Conquer . 43
4.3.1 Results . 43
4.3.2 Summary . 43

4.4 Closeness Centrality . 44
4.4.1 Results . 44
4.4.2 Summary . 45

4.5 K-Means Clustering . 45
4.5.1 Results . 45
4.5.2 Summary . 45

4.6 Collected results . 46
4.6.1 Results . 46
4.6.2 Summary . 46

5 Discussion 49
5.1 Comparison of Results . 49
5.2 Synergy with Other Research . 55
5.3 Limitations . 56

5.3.1 Computational Limitations . 56
5.3.2 K-means Limitations . 58
5.3.3 Validity of OSM Data . 60

5.4 Applicability in Other Domains . 60
5.5 Future Research . 62

6 Conclusion 63

Bibliography 64

Appendices 70
A Map of Bornholm . 70
B Map of Malta . 71
C Map of Grenada (main island) . 72
D Map of Bornholm: Driveable Network . 73
E Map of Malta: Driveable Network . 74
F Map of Grenada (main island): Driveable Network 75

2

Acronyms and Definitions

Arena The region or (collection of) countries, in which the target is located

Geolocating The act of translating imagery into a location

Hedging strategy The use of a strategy to place guesses on the world map

OSM OpenStreetMap

Target The location of the place the players have to guess

Plausible region The region or (collection of) countries, in which the target is be-
lieved to be located

3

List of Figures

2.1 Closeness centrality study in a simple network 16
2.2 Closeness centrality shown by nodes for Bornholm 18
2.3 Closeness centrality shown by edges for Bornholm 19
2.4 K-means clustering after various iterations 21
2.5 Correlation between k-means clustering of 1.000.000 random sample points

and the correctness . 22

3.1 Random Guess in Network - Bornholm 26
3.2 Random Guess in Network - Malta . 27
3.3 Random Guess in Convex Hull - Malta 28
3.4 Random Guess in Convex Hull - Bornholm 29
3.5 Center points of edges . 30
3.6 Grid division of the arenas . 30
3.7 The n bigger areas of Bornholm . 31
3.8 The n bigger areas of Malta . 32
3.9 The n convex hulls and geometric centroids of Bornholm 33
3.10 The n convex hulls and geometric centroids of Malta 33
3.11 The n convex hulls and their nodes with the highest score of closeness

centrality . 35
3.12 Four different stable clusterings of Bornholm with the custom build k-

means algorithm . 38
3.13 An inspection of the nodes of a cluster showing their sizes correctly cor-

responding to their weights . 39
3.14 The clusters and centroids of the arenas when using the hedging strategy

K-Means Clustering . 40

5.1 An inspection of the two best hedging strategies for Bornholm, K-Means
Clustering (left) and Closeness Centrality (right) 50

5.2 An inspection of the two hedging strategies, K-Means Clustering (left)
and Closeness Centrality (right), for Bornholm with n = 4 51

5.3 An inspection of the two hedging strategies, K-Means Clustering (left)
and Divide and Conquer B (right), for Bornholm with n = 7 52

5.4 An inspection of the second-best and the third-best hedging strategies,
Closeness Centrality and Divide and Conquer B, for Bornholm and Malta 53

5.5 A comparison of traversal direction A (left) and B (right) on the main
island of Grenada . 54

5.6 An inspection of the maximum span between two nodes in the networks
of Bornholm (left) and Malta (right) . 58

4

5.7 Nodes assigned to the wrong centroids during clustering in the networks
of Bornholm (left) and Malta (right) . 59

5.8 A solution to the warehouse location problem for Bornholm (left) and
Malta (right) . 61

5

List of Tables

2.1 Structure of OSM data . 15
2.2 Result of closeness centrality study in a simple network 17
2.3 Result of k-means test with various iterations 20

3.1 Results of the four different clusterings of Bornholm resulting from the
custom k-means implementation with 100.000 iterations 38

4.1 Results of hedging strategy Random Guess in Network with various iter-
ations . 41

4.2 Results of hedging strategy Random Guess in Convex Hull with various
iterations . 42

4.3 Results of hedging strategy Divide and Conquer with various iterations
and two diagonal traversal directions . 43

4.4 Results of hedging strategy Closeness Centrality with various iterations . 44
4.5 Results of hedging strategy K-Means Clustering with various iterations . 45
4.6 Results of all hedging strategies with 100.000 iterations 47
4.7 Sorted results of all hedging strategies with 100.000 iterations with the

percentages of relative distance increasements for the mean of best guesses 48

6

List of Algorithms

1 K-means Algorithm . 19
2 Hedging Strategy: Random Guess in Network 26
3 Hedging Strategy: Random Guess in Convex Hull 28
4 Hedging Strategy: Divide and Conquer 34
5 Hedging Strategy: Closeness Centrality 36
6 Hedging Strategy: K-Means Clustering 40

7

Chapter 1

Introduction

This chapter starts with an introduction to the online game GeoGuessr in section 1.1,
which briefly explains the playing rules of the different game modes and clarifies the one
game mode researched in this thesis. Followed by that, the general motivation for the
thesis is given in section 1.2, which also touches upon the recent increase in popularity
of the game. The research questions aimed to explore and answer in the thesis are
presented in section 1.3. Finally, section 1.4 offers a summary of the contributions
made to both the field of optimizing results in GeoGuessr and more generally to the
studies of centrality in geospatial networks.

1.1 GeoGuessr
GeoGuessr [2] is an online browser-based geography game, that lets players compete in
a variety of game modes. Options for both single-player, multiplayer, and team-based
games are available on the platform.

During each round, the players are presented with some location that is covered by
Google Street View [6]. From the imagery of this ground view, the players will pinpoint
a guess on a world map, where they believe the location to be. For the different game
modes, points are added or subtracted based on the distance from the guess to the
actual location.

Common for all game modes is the capability to choose the arena, which limits the
country, region, or some other characteristic of the locations offered by Google Street
View.

The game mode investigated in this thesis, which from this point on will be regarded
as the game itself, is a multiplayer team-based version. In this game mode, two teams
consisting of three players each, are competing against each other. Both teams start
with an equal amount of points, and the losing team of each round gets subtracted
points equivalent to the difference in distance of their best guess compared to the best
guess of the winning team. A team wins when the other team reaches zero or negative
points.

1.2 Motivation
When first introduced in 2013, GeoGuessr saw its first spike in interest [1]. As reported
in [1] based on data collected from the mainstream social media platforms, GeoGuessr’s
popularity after its launch however declined quickly. It was during the COVID-19

8

pandemic, the game had its renaissance and became a popular game among social
media personalities [1]. During this time, more game modes were made available, and
short video clips went viral online of players showing off their skills.

For some game modes, making use of a hedging strategy makes sense. Even when
playing single-player, it is often more reasonable to place a guess in a plausible region
rather than guessing in the outskirts of that region and risking a higher distance to the
target.

In the multiplayer team-based version of the game used as the basis for the research
in this thesis, the use of hedging strategies is essential for winning tournaments. A
clip from YouTube shows the GeoGuessr streamer Rainbolt playing a tournament with
teammates [24]. They quickly identify Argentina, Mexico, or the United States of
America to be the possible countries of the target, however in order to cover the region
in a suitable way they agree on a hedging strategy [24]:

"Yeah, it’s Arg, Mexico, or US."
"Alright, I’m going Mexico somebody go US."

Since the players have to place their guesses within a short time limit (typically within
30 seconds), the hedging strategies have to be agreed upon fairly quickly. In the clip,
the players eventually decide to place two guesses in the United States of America and
one in Mexico to cover their plausible region the best.

The precision of the guesses is therefore not as important as the general accuracy,
as only the best guess will be taken into consideration each round. In other words, it is
often more suitable for the teams to agree on a hedging strategy rather than having all
team members place guesses individually.

1.3 Research Questions
The optimal hedging strategy is non-trivial for at least two reasons: 1) the underlying
space of possible locations, i.e. the street network on which Google takes Street View
images, is potentially heterogeneously distributed over the arena, and 2) the minimum
of multiple player guesses wins.

In order to define a hedging strategy and be able to classify it as good or better
than alternative hedging strategies, also naive hedging strategies have to be defined and
tested similarly to the believed more optimal hedging strategy. Furthermore, the setting
- in this case, the arena - in which the test is taking place has to be reflected upon.

Summarized, this thesis seeks to explore, implement, test, and reflect upon one or
more hedging strategies while answering the questions: “How can the optimal hedging
strategy for multiple players in GeoGuessr be defined?” and “Which algorithms and
calculations can be used to implement such hedging strategies?”.

9

1.4 Contributions
The research of this thesis contributes to the task of geolocating in the domain of
GeoGuessr by offering pre-computed guesses for a given arena. Five hedging strategies
are offered, and each solves the task with a unique set of algorithmic procedures.

More generally, the research explores the notion of centrality in geospatial networks
and presents applications in domains apart from GeoGuessr. Among others, it uses
a customized version of a proposed hedging strategy to solve the warehouse location
problem.

A GitHub repository is offered to interested readers, that documents and exempli-
fies the steps from fetching the networks to generating the guesses.

10

Chapter 2

Background

In this chapter, the context for the thesis is set and put into perspective by analyzing and
presenting existing research in section 2.1. To understand the data being processed in
the thesis offered by OpenStreetMap [14], section 2.2 will clarify its form and attributes.
Centrality in networks can be defined and used for many different applications, which is
why section 2.3 will define its characteristics in this thesis. In particular, section 2.3.3
will explore the k-means algorithm.

2.1 Related Work
This section will present existing work and research done on the topic of GeoGuessr.
The usage of GeoGuessr in educational settings is described in section 2.1.1. From
there on, the existing research concentrates on optimizing the winning chances and
investigating how human players have become experts. In section 2.1.2, the usage of
trained neural networks is employed to play the game with the goal of outperforming
humans. The human performance is explored in section 2.1.3, which among others
enlightens how professionals have become expert players. An altered and simplified
version of the game has been subject to a research paper, that is presented in section
2.1.4. Finally, section 2.1.5 presents a previous attempt by the author of this thesis to
create a hedging strategy based on a static analysis of a geospatial network.

2.1.1 Utilization in Education

Both [64] and [46] report positive feedback on the use of GeoGuessr in educational set-
tings. Different computer games are compared and ranked in [64]. The study concludes
GeoGuessr to be the highest rated due to its focus on the relations of nature, humans,
and economic conditions.

The research conducted in [46] was mainly focused on GeoGuessr. This study
eventually concludes, that there "should be given more place for games in syllabuses,
books and activities" [46].

2.1.2 Machine Learning Techniques

In [68], a deep neural network was developed that given an image from Google Street
View somewhere in the United States of America will geolocate the most likely state.
This implies, that their model is only applicable when the arena of GeoGuessr is limited
to images within the borders of the United States of America.

11

A neural network is trained with a data set consisting of 2500 samples for each of
the 50 states. For each state, the samples are selected based on the population density.
Thereby a claim is made that population density has a correlation to the coverage
offered by Google Street View: [...] density-based sampling allows us to achieve a good
spread of locations [... and] primes the model for more densely populated regions [68].
Each sample consists of four images, as all the cardinal directions are covered by Google
Street View and therefore accounted for in the data set. 50States10K [68] is the name
of the data set with a total of 500.000 collected images made available for open-source
research.

DeepGeo performs best in the states of Hawaii and Alaska with a precision of 95.9%
and 91.2%. This is likely due to the uniqueness of their landscapes [68]. However, the
performance in other states such as Virginia and Texas goes as low as 9.2% and 10.4%.
Furthermore, the neural network makes no attempts to place a guess within the state.

A neural network is also developed and relied upon in [70] to increase the performance
of geolocation. It is stated, that "geolocation is an extremely challenging task since
many photos offer only few, possibly ambiguous, cues about their location" [70]. Their
approach is based on the assumption that geolocation is a classification problem.

The model called PlaNet, is trained with 126 million photos. These photos have
been scraped from the internet, and all consist of supplementary EXIF data attached to
them. As also mentioned in the paper, their "dataset is [...] extremely noisy, including
indoor photos, portraits, photos of pets, food, products and other photos not indicative
of location" [70].

It is chosen in [70] to split the world into cells containing an equal amount of photos.
Thereby, "sparsely populated areas are covered by larger cells and densely populated areas
are covered by finer cells" [70].

Results show, that PlaNet outperforms similar models and "even reaches super-
human performance" [70]. However, PlaNet makes no further effort to place a guess
within a cell, as it simply uses the center of it.

Similar to [68] and [70], [59] tries to categorize imagery into a known set of areas. To do
this, [59] uses "a combination of computer vision, machine learning and text retrieval
methods to compute a ranking of likely countries of the location shown" [59]. In other
words; given an image from Google Street View, their model called Country Guesser
will output a list of countries paired with the computed likelihood of the target being
within their borders.

The research in [59] determined that 110 countries were sufficiently covered by
Google Street View to qualify for being a part of the model. To estimate the solar
position, [59] investigates the brightness of parts of the image. Furthermore, [59] uses
character detection in combination with language libraries in Python to infer linguistic
origin. The coloration of the image, possibly car license plates, and identification of
general objects is also included in the geolocating procedure of [59].

12

It is reported in [59] that from a total of 220 guesses, the country of the target
was ranked 14.7 on average, meaning that on average over 14 countries were more likely
according to the model to be the country of the target.

2.1.3 Human Capabilities

In [58] the research focuses on geolocation capabilities from a human perspective. In
order to investigate this aspect of geolocation, 15 participants were included in the
study.

Some of the signs and traits the participants used for making their guesses included
studying architecture, identifying languages, inferring driving rules, positioning the sun,
finding road signs, and recognizing landscapes [58].

As for models trained to geolocate, also participants can get misled by laying too
much weight on certain traits that point in the wrong direction. [58] calls this symptom
fixation.

2.1.4 Voronoi Game

An altered and simplified version of GeoGuessr is studied in [36], which argues to
have designed similarities with the game studied in [36] and the Voronoi Game. As
summarized in [31], the "Voronoi game is a geometric model of competitive facility
location problem played between two players. [...] Payoff of each player is defined by
the quantity of users served by all of its facilities. The objective of each player is to
maximize their respective payoff" [31].

In the first version of the game presented in [36], two players, PlayerA and PlayerB,
are competing to place a guess closest to the target, T . It is assumed, that PlayerA has
placed all it’s guesses (a1)..(an) before PlayerB has placed any of its guesses (b1)..(bn).
At the time PlayerB has to place its guesses, the best guess from PlayerA with the
notion of a is known. At any time, PlayerB knows the difference in distance between
its best guess so far to T and the distance from a to T .

In the second version of the game, the two players, PlayerA and PlayerB, take
turns in placing a guess. Now both players know the difference in distance to T for
their respective best guesses a and b.

Lastly, a version of the game is defined in a one-dimensional setting. As also stated
in [36], this version "becomes trivial" [36], as it resembles a challenge in binary search
more than an actual strategy for outplaying and opponent in geolocating.

2.1.5 Static Analysis

Similar to the approaches designed, developed, and tested presented in this thesis, the
research project [49], which was the pilot project on this topic prior to this thesis,
describes procedures that will place guesses based on a static analysis of a geospatial
network.

13

The research conducted limits the arena to the island of Bornholm and suggests
three different approaches. All results have the conditions of a team consisting of three
players defining a hedging strategy. An overview of Bornholm can be found in appendix
A.

The first hedging strategy places all its guesses randomly in the geospatial network.
Results show, that the mean distance to target for the best guess when running 1.000.000
iterations is 11.58 km [49].

The second hedging strategy places all its guesses within the convex hull of the
geospatial network. Results show, that the mean distance to the target for the best
guess when running 1.000.000 iterations is 11.45 km [49].

Finally, the hedging strategy called Divide and Conquer, which places its guesses
based on a static analysis of the geospatial network, shows results for the mean distance
to the target for the best guess of 11.13 km when running 1.000.000 iterations. The
improvement of this strategy compared to the random strategies is therefore respectively
3.9% and 2.8% [49].

In this thesis, the ideas of [49] are among others extended to exploring further
hedging strategies with algorithmic procedures including machine learning techniques.

2.2 OSM and Geospatial Data
OpenStreetMap [14] is an open-source geographic database, that is maintained by its
volunteers and users. Besides storing and offering geographic data free of charge, it al-
lows for various integrations and uses of its service. The data offered by OpenStreetMap
consists of the entities listed in Tab. 2.1.

Geospatial data in general has many facets. One definition of geospatial by the
dictionary Merriam-Webster suggests the following: "consisting of, derived from, or
relating to data that is directly linked to specific geographical locations" [10]. In many
ways, a data set from OpenStreetMap follows the suggested definition:

1. The data consists of nodes directly linked to specific geographical locations, which
are in essence the building blocks.

2. Derived from the nodes are ways, relations, and members. These meta-objects
inherit and build upon the fundamental physical linkage of the nodes and describe
structures and connections.

3. Finally, the tags relate to the data, by supplying additional meta-data to the nodes
and the relations of the nodes.

14

Table 2.1: Structure of OSM data

Entity Description

Tag

A tag consists of a key-value pair, that describes some attribute of a
node, way, relation, or member. For example, some nodes have the tag
of <k="addr:housenumber" v="8"/> when describing a building. Ways
typically have tags describing, what vehicles can drive on the road, in ex-
ample <k="bicycle" v="yes"/>. Finally, relations have tags that de-
scribe the type of the relation, in example <k="building" v="yes"/>.

Node

Nodes most importantly consist of the attributes id, latitude,
and longitude. Besides possibly having tags attached, they
are described with other attributes such as visible="true",
timestamp="2012-08-04T11:35:42Z", user="Ernst Poulsen", and
version="1".

Way

Ways in OSM consist of a series of node references, attributes, and
possibly tags. Attributes for ways are similar to the ones for nodes,
except they do not contain latitude and longitude, as these are contained
in the referenced nodes.

Relation
A relation in an OSM data set consists of an ordered list of nodes, ways,
and members. It describes a greater characteristic of a collection of
entities, such as natural areas, buildings, and routes.

Member

Members exist within relations and represent other relations. A relation
can therefore participate in multiple other relations. Members contain
the attributes of type, ref, and role. A type can for example have
the value of way or relation. The ref is the reference to the id of the
relation and the role can have values such inner, outer, backward, and
forward.

2.3 Centrality

2.3.1 Measures of centrality

Centrality measures are essential to understanding macro- and micro-specific properties
of geospatial networks, and networks in general. In [69], a study on bus routes identifies
its network to be the type of "complex networks [that] exhibit a heterogeneous nature"
[69]. These types of networks are intricate to analyze, as every node can be of multiple
importance: "The importance of a node is largely affected and reflected by the topological
structure of the network to which it belongs. A node’s importance is highly correlated
with its capacity to impact the behaviours of its surrounding neighbours" [69].

The different measures of centrality defined in [69] are mostly concerned and only
relevant to networks of heterogeneous complexity. Degree centrality, strength centrality,
eigenvector centrality, Katz centrality, PageRank centrality, and betweenness centrality
are identified in [69]. However, closeness centrality "defined as the reciprocal of the mean

15

geodesic distance from a node to all the other nodes in the network" [69] has a potential
application in the static analysis required for defining hedging strategies.

The types of centrality relevant to this thesis focus on the macro-specific properties
of geospatial networks and thereby exclude measures that are reliant on node-specific
analysis. Eigenvector centrality can, even though its primary applications lie within
finding "influential nodes in a network" [63], be customized in a way to analyze dis-
tance importance. However, as with closeness centrality, also eigenvector centrality
yields traits, that makes its use impractical in the research context of this thesis: the
clustering of centralities. This phenomenon is explained and investigated further in
section 2.3.2.

For calculating the closeness centrality of a node in a network, the following equation
is used [44][75]:

Cc(pk) = (n− 1)
n∑

i=1
d(pi, pk)

(2.1)

Eq. (2.1) describes a measurement of closeness centrality Cc for a given node pk, that
is calculated by dividing the number of all nodes subtracted 1, n − 1, with the sum of
distances

n∑
i=1

d(pi, pk) from pk to every other node p1..pn.
As also described in [57] and [56], the distance function is primarily understood as

a Shortest Path implementation. However, the use of the Euclidean distance formula
as the distance function is Eq. (2.1) is possible as well.

The Euclidean distance formula in a two-dimensional coordinate system is defined
for two nodes, i and j, in Eq. (2.2) [37].

d(i, j) =
√

(ix − jx)2 + (iy − jy)2 (2.2)

In Fig. 2.1, a simple network of five nodes in a two-dimensional Cartesian coordinate
system is visualized. Note that, since the distance measure is Euclidean distance, de-
tached from graph distance, the placement of links is irrelevant. In this formulation,
this centrality metric only cares about the spatial distances of nodes from each other.
The nodes, pa..pe, all have their names and coordinates labeled.

Figure 2.1: Closeness centrality study in a simple network

16

When using Eq. (2.1) on the five nodes using the Euclidean distance defined in Eq. (2.2)
as the distance function, the measurements resulting from the calculation are as shown
in Tab. 2.2.

Table 2.2: Result of closeness centrality study in a simple network

Node Closeness centrality score
pa 0.485
pb 0.485
pc 0.707
pd 0.485
pe 0.485

2.3.2 Clustering of Centralities

As defined in [66], "[t]he closeness centrality of a vertex is based on the total distance
between one vertex and all other vertices, where larger distances yield lower closeness
centrality values" [66]. From this definition follows, that the likelihood of having the
most central nodes as neighbors or in the relative near distance is high.

This phenomenon is investigated and reported as two figures, Fig. 2.2 and Fig. 2.3.
The three nodes with the highest score of closeness centrality for the geospatial network
of Bornholm are made visible in Fig. 2.2 as dots with the colors red, green, and blue.
The figure shows, that all three nodes are in the center of the island close to each other.
Fig. 2.3 visualizes this phenomenon by coloring the edges of the geospatial network also
according to their score of closeness centrality. The figure indicates with a brighter
edge-coloring, that the majority of highly scored edges are found towards the center of
the island.

Both figures, Fig. 2.2 and Fig. 2.3, have been implemented using the NetworkX library
function closeness_centrality [11].

Implementation details and code can be found in the GitHub repository [23] for
investigation and recreation of all results and plots presented in this thesis.

2.3.3 K-Means

As described and visualized in section 2.3.2, using off-the-shelf standardized centrality
measures for the purpose of developing multiplayer hedging strategies in GeoGuessr is
not useful since the multiple guesses should be spread so that they cover the arena
more homogeneously to score a better minimum distance estimate on average. Other
methods should be explored to approach the task from new perspectives.

In [60], research has been conducted that uses parallel k-means clustering to in-
vestigate geospatial vegetation data. This was done by studying a LIDAR data set and
clustering different vegetation structures [60].

17

Figure 2.2: Closeness centrality shown by nodes for Bornholm

In [39] the k-means algorithm has been used with geospatial data, where the aim of the
research was to better the traffic control of a city in Cyprus.

[47] uses a modified k-means algorithm to investigate and suggest an optimized
public transportation network. A conclusion from the study underlines the synergy
that appears when "apply[ing] different methods (e.g. machine learning as well) for
geospatial data analysis" [47].

The k-means algorithm belongs to the: "[...] family of algorithms [that] iteratively
optimise a model (of the dataset under consideration) as K clusters. This cluster model
comprises a membership element, assigning each member of the dataset to one of the
clusters, and a centroid element, which describes each cluster" [67]. Many variations
exist of the k-means algorithm, whereas the most well-known is based on minimizing
the distance dv,cv of a node v to its assigned cluster c.

In other words, it will cluster a data set into K clusters by assigning each data
point to one of these.

18

Figure 2.3: Closeness centrality shown by edges for Bornholm

The main properties of a general k-means algorithm are demonstrated in Alg. 1 [30][35].
It alternates between assigning points to clusters and updating the centroids.

Algorithm 1 K-means Algorithm
Input

p1, p2, p3, ..., pn ∈ set of points P

C1, C2, C3, ..., Ck ∈ set of clusters C

1: Choose random centers c1, c2, c3, ..., ck for each cluster in C

2: repeat
3: C1, C2, C3, ..., Ck ← ∅
4: for each p ∈ P do
5: Let i = argmini=1,2,3,...k ||p− ci||2

6: Ci ← Ci ∪ {p}
7: for i = 1 to k do
8: if P i ̸= ∅ then ci = 1

|Ci|
∑

p∈Cip

9: until centers do not change

19

As the pseudo-code in Alg. 1 is somewhat simplified, different parameters and additional
optimizations should be explained.

First, one has to understand, that the result of each iteration of the algorithm is
better than or equal to the clustering provided by the previous iteration. A parameter
that therefore has a high correlation with both the running time and the correctness of
the result is the number of iterations [27].

To test both the relation of iterations and the correctness of the resulting k-means
clusters and their centroids and the libraries needed to conduct such experiments, a
preliminary implementation is developed.

The k-means algorithm and random data generation function from sklearn are used for
this investigation [22][19]. A data set consisting of 100 points randomly placed around
a center is generated with a seed, Spoints. Next, a list of centroids is initialized as None.

For the first iteration of the k-means clustering algorithm, three centroids are
placed randomly within the distribution of the points in the data set using a seed,
Scentroids. For the following iterations, the existing centroids are used as a basis for the
local optimization procedure of the algorithm. For each iteration, the coordinates of
the centroids are saved.

To explore the correlation of iterations and the correctness of the resulting k-means
clustering, 1000 iterations of the algorithm are performed. This test is initialized with
the same seeds, Spoints and Scentroids, as the previous experiment.

Fig. 2.4a, Fig. 2.4b, Fig. 2.4c, and Fig. 2.4d, show the clustering and the centroids
of the experiments after one, two, three, and 1000 iterations of the k-means algorithm
on an identical data set and initial centroid placement using the same seeds. The results
from the tests visualized in Fig. 2.4a, Fig. 2.4b, Fig. 2.4c, and Fig. 2.4d are shown in
Tab. 2.3, in which both the coordinates of the centroids and the distance of cluster
centroids to the final clustering centroids after 1000 iterations are recorded.

Table 2.3: Result of k-means test with various iterations

Cluster Iteration Coordinatescentroid DistancefinalCentroid

A

1 (1.515, 2.643) 0.354
2 (1.534, 2.369) 0.130
3 (1.491, 2.285) 0.071
1000 (1.423, 2.301)

B

1 (0.116, 1.249) 0.471
2 (0.206, 1.037) 0.252
3 (0.273, 0.961) 0.152
1000 (0.394, 0.869)

C

1 (1.889, 0.874) 0.404
2 (1.982, 0.712) 0.271
3 (2.114, 0.683) 0.140
1000 (2.253, 0.699)

20

(a) 1 iteration (b) 2 iterations

(c) 3 iterations (d) 1000 iterations

Figure 2.4: K-means clustering after various iterations

To further understand and visualize the correlation between the correctness of a k-
means clustering and the number of executed iterations, an additional experiment is
conducted.

For the test visualized in Fig. 2.5, 1.000.000 sample points are randomly generated,
and three clusters are sought. In less than 15 iterations, the k-means algorithm has
produced clusters with centroids that are only corrected by a little fraction for the
following iterations.

21

Figure 2.5: Correlation between k-means clustering of 1.000.000 random sample points and the correctness

The low number of iterations needed for the conducted experiment in Fig. 2.5 has
multiple causes. One is the initial positioning of the centroids, as also described in [29],
[51], [74], and [34]. Another is the entropy of the randomly generated data set.

In general, the k-means algorithm has shortcomings. The running time is complex,
as every iteration calculates the minimum distance for each point to a centroid and
afterwards recalculates the position of the centroids. Much research has been made
to optimize the k-means algorithm, for example [76] and [62]. Therefore many imple-
mentations of the k-means algorithm have several break conditions: stop the algorithm
whenever the improvements are below a threshold, stop the algorithm if the centroids
do not move, or even just a hardcoded maximum number of iterations.

22

Chapter 3

Methods and Implementation

This chapter and its sections will introduce and explain five different hedging strategies,
from which the test results are reported later in chapter 4. The arenas used and the
placement of targets within these are described in section 3.1 with code snippets that
correspond to the actual implementation. From this point on, implementation details
are described in a pseudo-code style. The first hedging strategy, presented in section 3.2,
is of a random character as it randomly places guesses on the network. Section 3.3 also
suggests a random approach, as the hedging strategy places guesses within the convex
hull of the network. The hedging strategy developed in [49] is presented in section 3.4,
and places its guesses based on an analysis of the network. Section 3.5 argues for and
describes a hedging strategy based on closeness centrality. Finally, section 3.6 presents
a hedging strategy based on a k-means clustering approach.

3.1 Arena and Target

3.1.1 Arenas: Bornholm and Malta

The tests will be conducted in two arenas, Bornholm and Malta. Appendix A and B
show the maps of the arenas, whereas appendix D and E show the driveable geospatial
networks. Furthermore, the tests are conducted with three guesses for each round,
meaning that the team consists of three players.

The island of Bornholm is a Danish island in the Baltic Sea with a geospatial
network mostly present in harbor cities [7]. Malta is a country in the Mediterranean
Sea mainly consisting of three bigger islands Malta, Gozo, and Comino [9].

These test arenas were selected due to their small size, allowing fast computations,
and due to the non-trivial shape of Malta which is split into three islands.

Both arenas are fetched using the osmnx library [18]. However, when fetching Malta
by using the function graph_from_place only the main island is returned [16]. Fur-
thermore, when using the function graph_from_bbox, only one of Malta’s islands is
returned [15]. Therefore Malta is fetched by its three main islands individually and
composed using the function compose_all from the networkx library [13][12].

Due to optimization on time when debugging code and running tests, the networks
are saved after being fetched. The code used for fetching, saving, and composing the
networks is shown in Cod. 3.1.

23

Code snippet 3.1: Fetch, save, and load the geospatial networks for Bornholm and Malta

import osmnx as ox
import networkx as nx

#Fetch and save Malta
gozo = ox.graph_from_bbox(north=36.0831, south=36.0036, east=14.3523,

west=14.1825, network_type="drive")
comino = ox.graph_from_bbox(north=36.0002 ,south=35.8039, east=14.5782,

west=14.3183, network_type="drive")
malta = ox.graph_from_bbox(north=36.0209, south=36.0036, east=14.3513,

west=14.3162, network_type="drive")
ox.save_graphml(gozo, filepath="./savedGraphs/gozo.graphml")
ox.save_graphml(comino, filepath="./savedGraphs/comino.graphml")
ox.save_graphml(malta, filepath="./savedGraphs/malta.graphml")

#Fetch and save Bornholm
bornholm = ox.graph_from_place("Bornholm", network_type="drive")
ox.save_graphml(bornholm, filepath="./savedGraphs/bornholm.graphml")

#Load networks into networkx.MultiGraph. State the arena
arena = "malta" #can be either "malta" or "bornholm"
graph = nx.MultiGraph

if arena == "bornholm":
graph = ox.load_graphml("./savedGraphs/bornholm.graphml")

else:
gozo = ox.load_graphml("./savedGraphs/gozo.graphml")
comino = ox.load_graphml("./savedGraphs/comino.graphml")
malta = ox.load_graphml("./savedGraphs/malta.graphml")
graph = nx.compose_all([gozo, comino, malta])

3.1.2 Placement of the Target

The target should be placed randomly in the driveable geospatial network of the arena.
However, each node or edge cannot simply be chosen randomly correctly without weigh-
ing its actual representation. In other words, an edge between two nodes can be of ar-
bitrary length, meaning that the random selection of some node in the network should
account for this. Furthermore, the samples should be able to choose some interpolation
of the edges rather than choosing just their endpoints (i.e., the network nodes).

To do exactly this, the targets are randomly created using the function
sample_points from the osmnx.utils_geo library [17]. Working further with the
source code shown in Cod. 3.1, retrieving a sample node as the target is done as shown
in Cod. 3.2.

24

Code snippet 3.2: Retrieve sample node as the target

from osmnx.utils_geo import sample_points

#Translate the graph into geospatial network with latitude and longitude
graph.graph['crs'] = "epsg:3857"

#Get the coordinates from a geopandas.GeoSeries object
def retrieveLatAndLong(geo):

return (geo.x, geo.y)

#Retrieve sample node as target
target = retrieveLatAndLong(sample_points(graph, 1))

3.2 Random Guess in Network

3.2.1 Motivation

The hedging strategy Random Guess in Network has two contributions to the ex-
ploratory part of this thesis and should therefore be tested.

First, it can be regarded as a measure of, how well or badly the other non-random
hedging strategies are performing compared to this random hedging strategy. Thereby
it produces a point of reference, or null model, that defines whether or not a non-random
strategy has a rewarding effect.

Second, the strategy itself can be argued for, as the guesses it produces follows the
distribution of the geospatial network if implemented correctly. Imagine a small circular
island, where 80% of the network exists in and around a harbor city. The remaining
20% of the driveable geospatial network is on the opposite shore of the island in and
around a smaller harbor city. Statistically, the target and each guess would have the
same probability of being placed in either the bigger city or the smaller city, respectively
20% and 80%. To some extent of intuition, this is not a bad hedging strategy for all
arenas.

3.2.2 Implementation

The implementation of this random hedging strategy requires two steps. First, three
random guesses have to be generated somewhere in the network of the arena. This is
done by using the same function as in section 3.1.2, sample_points [17].

Second, the distances from each sampled node should be calculated to the target.
This is done by using the Haversine formula that calculates the distance between two
nodes in a geospatial network [65]. The implementation is shown in Alg. 2 and a
visualization of the algorithm is shown in Fig. 3.1 and Fig. 3.2.

25

Algorithm 2 Hedging Strategy: Random Guess in Network
Input

g1, g2, g3 ∈ set of guesses G within arenanetwork

t the target within arenanetwork

1: Let best guess so far, gmin ← null

2: Let minimum distance so far, distmin ← intmax

3: for each g ∈ G do
4: Let dist = haversine(g, t)
5: if dist < gmin then gmin = g, distmin = dist

6: return gmin, distmin

Figure 3.1: Random Guess in Network - Bornholm

26

Figure 3.2: Random Guess in Network - Malta

3.3 Random Guess in Convex Hull

3.3.1 Motivation

Like the hedging strategy Random Guess in Network places guesses randomly, also
the hedging strategy Random Guess in Convex Hull employs a random approach for
guessing. However, Random Guess in Convex Hull places guesses randomly distributed
within the convex hull of the network instead. The convex hull of a network is the
minimum convex polygon that includes all the nodes [32].

Besides being another random approach that can be used as a measure for identify-
ing more optimal hedging strategies, also Random Guess in Convex Hull can be argued
for having a potential value in certain arenas.

Imagine an arena consisting of two identically shaped circular islands, islandA

and islandB. Both islandA and islandB have 50% of the total network of the arena
evenly distributed. The distance between the two islands from the nearest shore of each
respectively is equal to the radius of both islandA and islandB.

Using the other random hedging strategy, Random Guess in Network, would place
all guesses on the islands as only they have a driveable network. However, intuitively
placing one of the three guesses in the middle of the sea that is dividing the two islands
would be a viable hedging of the arena.

27

3.3.2 Implementation

The implementation of Random Guess in Convex Hull requires some preliminary com-
putations. The three randomly generated guesses should be within the convex hull of
the arena. Therefore, the convex hull of the arena should be computed initially to de-
termine whether or not a guess is within the boundaries. For generating the convex hull
polygon, the function convex_hull is used by GeoPandas [5][4].

After determining the convex hull and generating three random guesses within it,
the forthgoing procedure is very similar to Alg. 2. The implementation of Random
Guess in Convex Hull is shown in Alg. 3 and a visualization of the algorithm is shown
in Fig. 3.4 and Fig. 3.3.

Figure 3.3: Random Guess in Convex Hull - Malta

Algorithm 3 Hedging Strategy: Random Guess in Convex Hull
Input

g1, g2, g3 ∈ set of guesses G within arenaconvexHull

t the target within arenanetwork

1: Let best guess so far, gmin ← null

2: Let minimum distance so far, distmin ← intmax

3: for each g ∈ G do
4: Let dist = haversine(g, t)
5: if dist < gmin then gmin = g, distmin = dist

6: return gmin, distmin

28

Figure 3.4: Random Guess in Convex Hull - Bornholm

3.4 Divide and Conquer

3.4.1 Motivation

A hedging strategy called Divide and Conquer is described in [49], that places its guesses
based on an analysis of the network. Instead of placing guesses randomly, it divides
the network into n equal subnetworks, where n is the number of guesses. In each
subnetwork, the midpoint is calculated and eventually used as a guess.

This hedging strategy intuitively has strengths that the random hedging strategies
do not possess, as it places its guesses based on a data-driven rationale. However, as
reported in [49], the applied graph traversal together with the use of midpoint as guesses
are primitive solutions, as "most of the bigger cities lie near the coast [of Bornholm]"
[49], and thereby simplify aspects of the challenge.

3.4.2 Implementation

Several data translations and computations are required in the hedging strategy Divide
and Conquer. First, the network has to be abstracted into a set of points that are
generated in the center of each edge. The points should, besides holding the values of

29

latitude and longitude, also contain information on their weight, which is equal to the
length each center point represents. This abstraction is shown in Fig. 3.5.

Figure 3.5: Center points of edges

The next step requires dividing the network into a grid and assigning each cell of the
grid all of the center points, that are within it. The configuration in the implementation
for the tests is set to (35, 35), meaning that both the height and the width of the grid
are split into 35 cells.

This subprocedure of the algorithm is shown in Fig. 3.6a and Fig. 3.6b for Bornholm
and Malta respectively.

(a) Bornholm

(b) Malta

Figure 3.6: Grid division of the arenas

30

Now all the weighted points are iterated through to place each in one of the cells of the
grid. By this point, all the grid cells contain both the weighted points and the total
sum of their weights.

A traversal is now executed, that diagonally runs through all cells and associates
each cell with a bigger area. There should be n bigger areas, where n is the number
of guesses. During the traversal, a cell gets associated with a bigger area, areax if the
cell is within the convex hull of the arena and the bigger area’s current total weight is
not greater or equal to the total weight of the network divided by n, as the following
assertion must hold: weightarea ≤ weighttotal

n .
As described in [49], the diagonal direction of the traversal seemed intuitively the

worst of the two possible directions, as the direction followed the shape of Bornholm.
However, this claim was not supported by tests. Therefore both diagonal traversal
directions will be tested in this thesis.

Fig. 3.7a and Fig. 3.7b show the resulting bigger areas when traversing with the
two diagonal directions in the arena of Bornholm, whereas Fig. 3.8a and Fig. 3.8b show
the resulting bigger areas when traversing with the two diagonal directions in the arena
of Malta.

(a) Diagonal direction A (b) Diagonal direction B

Figure 3.7: The n bigger areas of Bornholm

31

(a) Diagonal direction A (b) Diagonal direction B

Figure 3.8: The n bigger areas of Malta

The next and final subprocedure of the hedging strategy explored in [49] defines the
guesses after three steps. First, all the corner points of the grid cells of the n bigger
areas are added to n collections. Second, the convex hulls of these n collections are now
generated using the function convex_hull [4]. Third, the geometric centroids, which in
this case is equivalent to the midpoint, is calculated using the function centroid from
GeoPandas [3]. These n geometric centroids are now regarded as the n guesses of the
Divide and Conquer hedging strategy.

Fig. 3.9a and Fig. 3.9b show the resulting convex hulls and geometric centroids
when traversing with the two diagonal directions in the arena of Bornholm, whereas
Fig. 3.10a and Fig. 3.10b show the resulting convex hulls and geometric centroids when
traversing with the two diagonal directions in the arena of Malta. The pseudo-code for
the Divide and Conquer hedging strategy is shown in Alg. 4.

32

(a) Diagonal direction A (b) Diagonal direction B

Figure 3.9: The n convex hulls and geometric centroids of Bornholm

(a) Diagonal direction A (b) Diagonal direction B

Figure 3.10: The n convex hulls and geometric centroids of Malta

33

Algorithm 4 Hedging Strategy: Divide and Conquer
Input

The target, t, within arenanetwork

The convex hull of the network, convexhull

The list of weighted points, Pweighted

The collection of empty grid cells, G

The list of empty bigger areas, A

The total weight of the network, weighttotal

1: Let best guess so far, gmin ← null

2: Let minimum distance so far, distmin ← intmax

3: An integer to determine the current index starting at 0, i

4: for each p ∈ Pweighted do
5: Find the cell c of G that includes p

6: Add p to c and add the weight of p to the total weight of c

7: for each c ∈ G do (diagonal traverse)
8: if c ∈ convexhull then
9: if weight(A[i]) < weighttotal

n) then A[i] = A[i] ∪ c

10: else i + +, A[i] = A[i] ∪ c

11: for each a ∈ A do
12: Let g = geometriccentroid(a)
13: Let dist = haversine(g, t)
14: if dist < gmin then gmin = g, distmin = dist

15: return gmin, distmin

3.5 Closeness Centrality

3.5.1 Motivation

As mentioned in section 2.3.2, some challenges emerge when using closeness centrality
to define a hedging strategy, caused by the risk of clustering of the most central nodes
in the network. However, using closeness centrality within a subnetwork seems like a
valid approach. As for the hedging strategy Random Guess in Network, this hedging
strategy will therefore also place its guesses on the network of the arena.

In the hedging strategy Divide and Conquer, the final guess within the n resulting
divisions of the arena is equal to the geometric centroid of the convex hull depicting the
division. This hedging strategy, Closeness Centrality, will use the measure of closeness
centrality to further adjust the guesses within these n convex hulls.

As the results in section 4.3 show when traversing with the two different diagonal
directions in Divide and Conquer, one direction is found to outperform the others.
Therefore, direction B is employed for this hedging strategy.

34

3.5.2 Implementation

Many computational steps of this hedging strategy are identical to the ones of Divide
and Conquer. Until the point when Divide and Conquer, as shown in Alg. 4 on line 12,
uses the geometric centroids as guesses, the two hedging strategies are alike.

At this step, the Closeness Centrality hedging strategy calculates the node with
the highest closeness centrality within each subnetwork. However, three problems occur
when using the closeness_centrality function from networkx [11]. First, it requires
an actual network, which is difficult to fetch from osmnx given the difficulties described
in 3.1. Second, it uses as the measure of the distance the shortest path from each node
to all others, where the measure of distance preferably should be the haversine. Third,
the implementation should account for the weight a node represents.

Therefore, the closeness score is calculated with a custom function, that sums
all haversine distances from each node to all others within every subnetwork. The
nodes used for this calculation are abstractions of edges, given that they represent the
centers and lengths. Given a time complexity of O(N2) for the distance calculations,
the developed implementation makes it possible to simplify the number of center points
by clustering neighbors.

Fig. 3.11a and Fig. 3.11b show the resulting convex hulls and the nodes within
these with the highest score of closeness centrality. The pseudo-code for the Closeness
Centrality hedging strategy is shown in Alg. 5.

(a) Bornholm

(b) Malta

Figure 3.11: The n convex hulls and their nodes with the highest score of closeness centrality

35

Algorithm 5 Hedging Strategy: Closeness Centrality
Input

The target, t, within arenanetwork

The convex hull of the network, convexhull

The list of weighted points, Pweighted

The collection of empty grid cells, G

The list of empty bigger areas, A

The total weight of the network, weighttotal

1: Let best guess so far, gmin ← null

2: Let minimum distance so far, distmin ← intmax

3: An integer to determine the current index starting at 0, i

4: for each p ∈ Pweighted do
5: Find the cell c of G that includes p

6: Add p to c and add the weight of p to the total weight of c

7: for each c ∈ G do (diagonal traverse)
8: if c ∈ convexhull then
9: if weight(A[i]) < weighttotal

n) then A[i] = A[i] ∪ c

10: else i + +, A[i] = A[i] ∪ c

11: Let CCmin = []
12: for each a ∈ A do
13: Let CC = empty map

14: Na ← the weighted center points within a

15: for each n ∈ Na do
16: Let CC[n] = 0
17: for each m ∈ Na do
18: CC[n] = CC[n] + haversine(n, m) · weightm

19: Append min(CC) to CCmin

20: for each g ∈ CCmin do
21: Let dist = haversine(g, t)
22: if dist < gmin then gmin = g, distmin = dist

23: return gmin, distmin

3.6 K-Means Clustering

3.6.1 Motivation

As described in 2.3.3, the k-means clustering algorithm is a procedure for clustering
entries in a data set, in which each iteration will either optimize the current clustering
or terminate the process.

For the application of the k-means clustering algorithm within the domain of
geospatial hedging, both opportunities and challenges arise. Unlike the implemented
non-random hedging strategies so far - Divide and Conquer and Closeness Centrality -

36

this approach is not bound to a traversal of the network for dividing it. The k-means
algorithm will cluster the network as this is a fundamental feature of the algorithm,
whereas both Divide and Conquer and Closeness Centrality rely on a diagonal divi-
sion of the network. Furthermore, whereas the other non-random hedging strategies
divide the network into equal-weighted parts, the k-means algorithm will optimize the
clustering natively.

Imagine an arena consisting of three equally weighted and evenly distributed islands
in the shape of an equilateral triangle. One island is in the south, whereas the two other
islands are located respectively northwest and northeast of it. This arena will challenge
the diagonal traversal technique, meaning both directions A and B. The Divide and
Conquer is challenged, as two guesses would be placed in the middle of the ocean
between the same two islands, iA and iB, whereas the last guess would be placed in the
middle of the third island, iC . The Closeness Centrality hedging strategy would place
two guesses on the shores of iA and iB, either both guesses on one island or one guess on
each island, whereas the last guess would be placed in a central node of the last island,
iC .

The k-means algorithm would recognize by itself, that each island should be con-
sidered a cluster. Hence, the k-means algorithm intuitively seems like a versatile and
promising approach.

3.6.2 Implementation

The implementation of the K-Means Clustering hedging strategy starts with a dilemma,
as two approaches are considered.

One approach builds on a custom build k-means algorithm developed for spatial
applications, whereas the other approach utilizes an existing function KMeans from the
sklearn library [22].

A third approach using DBSCAN was also considered [20]. However, it does not allow
to predefine the number of clusters and was therefore dismissed.

The custom build implementation is more correct in terms of distance measures, as
it uses the haversine function to determine the distance from nodes of a cluster to its
centroid.

However, as visualized in Fig. 3.12, the initial selection of centroids is essential
for the resulting clustering. Fig. 3.12 shows four different stable possible clusterings of
Bornholm, that are achievable with different initial randomly chosen centroids.

37

Figure 3.12: Four different stable clusterings of Bornholm with the custom build k-means algorithm

Testing the four different clusterings visualized in Fig. 3.12 with 100.000 iterations
shows, that they are not equally good hedging strategies.

Tab. 3.1 summarizes the test results from which can be concluded, that the clus-
tering in the top left corner of Fig. 3.12 is superior to the others.

Table 3.1: Results of the four different clusterings of Bornholm resulting from the custom k-means implementation with
100.000 iterations

Position Measure All [km] Winning [km]

top left
Mean 20.057 7.517
σ 12.083 2.964

top right
Mean 20.192 7.783
σ 12.096 3.478

bottom left
Mean 20.214 8.070
σ 11.695 3.629

bottom right
Mean 20.143 7.989
σ 11.657 3.589

The other approach utilizes the KMeans function from the sklearn library [22]. This
function does not support distances to be calculated with other functions than the
Euclidean distance formula. This means, that the resulting clusterings are not entirely
correct.

However, the KMeans function supports multiple other parameters. Besides choos-
ing the number of clusters and the maximum iteration count, sklearn offers the option
to select an initialization parameter called init [22]. When passing the parameter
value k-means++ instead of random, the algorithm "selects initial cluster centroids us-

38

ing sampling based on an empirical probability distribution of the points’ contribution to
the overall inertia" [22]. When selecting this parameter value, the resulting clusterings
have been observed to be near identical after each execution of the clustering algorithm.

Furthermore, running the k-means algorithm with the previously mentioned pa-
rameter on the arena of Bornholm has shown to result in a clustering very similar to
the best-performing clustering documented in Tab. 3.1. After considering the trade-offs
for each implementation, the choice falls on using sklearns’s function KMeans.

The implementation starts with, as also shown in Alg. 4 and Alg. 5, a computation
of the weighted center points of all edges in the network of the arena.

Followed by this computation comes the initialization of KMeans [22]. It is given
as parameters the number of clusters, the method for initial clustering selection, and
the maximum number of iterations: [3, ’k-means++’, 1000].

Now the weighted center points can be fitted to the k-means algorithm configura-
tion by using the fit function [21]. The function is given both the tuples consisting of
the latitude and longitude of the weighted center points and their weights.

To visualize and confirm that the weight of each center point is correctly computed,
Fig. 3.13 is created. It shows an inspection of a part of the arena’s clusters and the
different sizes of the nodes that correspond to their respective weights.

Figure 3.13: An inspection of the nodes of a cluster showing their sizes correctly corresponding to their weights

Now that the data set consisting of the weighted center points has been fitted, the
cluster’s centroids and their corresponding nodes can be retrieved. The centroids of the
clusters will be the guesses.

Fig. 3.14a and Fig. 3.14b show the resulting clusters and their centroids of Born-
holm and Malta. Alg. 6 shows the pseudo-code of the hedging strategy’s algorithm.

39

(a) The clusters and centroids of Bornholm (b) The clusters and centroids of Malta

Figure 3.14: The clusters and centroids of the arenas when using the hedging strategy K-Means Clustering

Algorithm 6 Hedging Strategy: K-Means Clustering
Input

The target, t, within arenanetwork

The list of weighted points, Pweighted

1: Let best guess so far, gmin ← null

2: Let minimum distance so far, distmin ← intmax

3: Let N be the nodes of Pweighted

4: Let W be the weights of Pweighted

5: Let k-means, k_means ← KMeans(3,’k-means++’,1000)
6: Let the weighted fit, k_meansfit ← k_means.fit(N, W)
7: Let C be the centroids of k_meansfit

8: for each g ∈ C do
9: Let dist = haversine(g, t)

10: if dist < gmin then gmin = g, distmin = dist

11: return gmin, distmin

40

Chapter 4

Results

This chapter will show and summarize the results of the five different hedging strategies
presented and discussed in sections 3.2-3.6. The results for the individual hedging
strategies are presented in sections 4.1-4.5, whereas an overview of the results of all
hedging strategies is offered in section 4.6.

4.1 Random Guess in Network

4.1.1 Results

The results for the hedging strategy Random Guess in Network are shown in Tab. 4.1.
Both the arenas - Bornholm and Malta - have been subjects to the test.

Tests have been conducted with three different numbers of iterations (1.000, 10.000,
and 100.000) and both the means and standard deviations were measured and docu-
mented for all guesses and the winning guesses.

Table 4.1: Results of hedging strategy Random Guess in Network with various iterations

Iterations Arena Measure All [km] Winning [km]

1.000
Bornholm

Mean 21.029 11.608
σ 11.804 7.393

Malta
Mean 13.887 7.508
σ 10.344 6.551

10.000
Bornholm

Mean 20.921 11.553
σ 11.887 7.392

Malta
Mean 13.661 7.346
σ 10.141 6.362

100.000
Bornholm

Mean 20.934 11.572
σ 11.855 7.420

Malta
Mean 13.684 7.298
σ 10.215 6.357

4.1.2 Summary

The test results for the hedging strategy Random Guess in Network with 100.000 it-
erations show, that the mean distance to the target node for all guesses on the arena
of Bornholm is 20.934km with a standard deviation of 11.855km. On the arena of

41

Malta, the mean distance to the target node for all guesses is 13.684km with a standard
deviation of 10.215km.

For the winning guesses on Bornholm, the mean distance to the target node is
11.572km with a standard deviation of 7.420km. On the arena of Malta, the mean
distance to the target node for the winning guesses is 7.298km with a standard deviation
of 6.357km.

4.2 Random Guess in Convex Hull

4.2.1 Results

The results for the hedging strategy Random Guess in Convex Hull are shown in
Tab. 4.2. Both the arenas - Bornholm and Malta - have been subjects to the test.

Tests have been conducted with three different numbers of iterations (1.000, 10.000,
and 100.000) and both the means and standard deviations were measured and docu-
mented for all guesses and the winning guesses.

Table 4.2: Results of hedging strategy Random Guess in Convex Hull with various iterations

Iterations Arena Measure All [km] Winning [km]

1.000
Bornholm

Mean 20.268 11.573
σ 11.222 6.922

Malta
Mean 15.893 8.393
σ 9.976 5.861

10.000
Bornholm

Mean 20.037 11.495
σ 10.977 6.911

Malta
Mean 15.655 8.164
σ 9.784 5.520

100.000
Bornholm

Mean 20.012 11.425
σ 11.062 6.963

Malta
Mean 15.740 8.238
σ 9.800 5.623

4.2.2 Summary

The test results for the hedging strategy Random Guess in Convex Hull with 100.000
iterations show, that the mean distance to the target node for all guesses on the arena
of Bornholm is 20.012km with a standard deviation of 11.602km. On the arena of
Malta, the mean distance to the target node for all guesses is 15.740km with a standard
deviation of 9.800km.

For the winning guesses on Bornholm, the mean distance to the target node is
11.425km with a standard deviation of 6.963km. On the arena of Malta, the mean
distance to the target node for the winning guesses is 8.238km with a standard deviation
of 5.623km.

42

4.3 Divide and Conquer

4.3.1 Results

The results for the hedging strategy Divide and Conquer are shown in Tab. 4.3. Both
the arenas - Bornholm and Malta - have been subjects to the test.

Tests have been conducted with three different numbers of iterations (1.000, 10.000,
and 100.000) and two directions for the diagonal traversals: A and B. Both the means
and standard deviations were measured and documented for all guesses and the winning
guesses.

Table 4.3: Results of hedging strategy Divide and Conquer with various iterations and two diagonal traversal directions

Iterations Arena Measure All [km] Winning [km]

1.000

Bornholm A
Mean 17.131 11.158
σ 8.034 5.690

Bornholm B
Mean 18.668 8.081
σ 10.686 3.195

Malta A
Mean 12.626 10.767
σ 5.647 5.548

Malta B
Mean 13.182 5.352
σ 9.098 3.056

10.000

Bornholm A
Mean 17.258 11.171
σ 8.059 5.620

Bornholm B
Mean 18.681 8.148
σ 10.625 3.109

Malta A
Mean 12.740 10.905
σ 5.527 5.461

Malta B
Mean 12.959 5.199
σ 8.996 3.028

100.000

Bornholm A
Mean 17.226 11.167
σ 8.056 5.676

Bornholm B
Mean 18.713 8.084
σ 10.674 3.123

Malta A
Mean 12.740 10.915
σ 5.518 5.461

Malta B
Mean 12.956 5.210
σ 8.980 3.016

4.3.2 Summary

The test results for the hedging strategy Divide and Conquer with 100.000 iterations
using traversal direction A show, that the mean distance to the target node for all
guesses on the arena of Bornholm is 17.226km with a standard deviation of 8.056km.

43

On the arena of Malta, the mean distance to the target node for all guesses using
traversal direction A is 12.740km with a standard deviation of 5.518km.

The test results for the hedging strategy Divide and Conquer with 100.000 itera-
tions using traversal direction B show, that the mean distance to the target node for all
guesses on the arena of Bornholm is 18.713km with a standard deviation of 10.674km.
On the arena of Malta, the mean distance to the target node for all guesses using
traversal direction B is 12.956km with a standard deviation of 8.980km.
For the winning guesses on Bornholm, the mean distance to the target node using
traversal direction A is 11.167km with a standard deviation of 5.676km. On the arena
of Malta, the mean distance to the target node using traversal direction A for the
winning guesses is 10.915km with a standard deviation of 5.461km.

For the winning guesses on Bornholm, the mean distance to the target node using
traversal direction B is 8.048km with a standard deviation of 3.123km. On the arena of
Malta, the mean distance to the target node using traversal direction B for the winning
guesses is 5.210km with a standard deviation of 3.016km.

4.4 Closeness Centrality

4.4.1 Results

The results for the hedging strategy Closeness Centrality are shown in Tab. 4.4. Both
the arenas - Bornholm and Malta - have been subjects to the test.

Tests have been conducted with three different numbers of iterations (1.000, 10.000,
and 100.000) and both the means and standard deviations were measured and docu-
mented for all guesses and the winning guesses.

The diagonal traversal direction B was used for the tests because this direction
showed better results than direction A as shown in section 4.3.1.

Table 4.4: Results of hedging strategy Closeness Centrality with various iterations

Iterations Arena Measure All [km] Winning [km]

1.000
Bornholm

Mean 19.350 7.679
σ 11.525 2.883

Malta
Mean 12.147 5.538
σ 8.801 4.189

10.000
Bornholm

Mean 19.499 7.707
σ 11.583 2.893

Malta
Mean 11.960 5.293
σ 8.574 4.024

100.000
Bornholm

Mean 19.501 7.657
σ 11.624 2.903

Malta
Mean 12.069 5.356
σ 8.634 4.078

44

4.4.2 Summary

The test results for the hedging strategy Closeness Centrality with 100.000 iterations
show, that the mean distance to the target node for all guesses on the arena of Bornholm
is 19.501km with a standard deviation of 11.624km. On the arena of Malta, the mean
distance to the target node for all guesses is 12.069km with a standard deviation of
8.634km.

For the winning guesses on Bornholm, the mean distance to the target node is
7.657km with a standard deviation of 2.903km. On the arena of Malta, the mean
distance to the target node for the winning guesses is 5.365km with a standard deviation
of 4.078km.

4.5 K-Means Clustering

4.5.1 Results

The results for the hedging strategy K-Means Clustering are shown in Tab. 4.5. Both
the arenas - Bornholm and Malta - have been subjects to the test.

Tests have been conducted with three different numbers of iterations (1.000, 10.000,
and 100.000) and both the means and standard deviations were measured and docu-
mented for all guesses and the winning guesses.

Table 4.5: Results of hedging strategy K-Means Clustering with various iterations

Iterations Arena Measure All [km] Winning [km]

1.000
Bornholm

Mean 19.185 7.389
σ 11.491 2.883

Malta
Mean 15.340 4.453
σ 11.088 1.960

10.000
Bornholm

Mean 19.342 7.465
σ 11.523 2.801

Malta
Mean 15.279 4.362
σ 11.137 1.930

100.000
Bornholm

Mean 19.362 7.477
σ 11.531 2.831

Malta
Mean 15.282 4.345
σ 11.146 1.939

4.5.2 Summary

The test results for the hedging strategy K-Means Clustering with 100.000 iterations
show, that the mean distance to the target node for all guesses on the arena of Bornholm
is 19.362km with a standard deviation of 11.531km. On the arena of Malta, the mean

45

distance to the target node for all guesses is 15.282km with a standard deviation of
11.146km.

For the winning guesses on Bornholm, the mean distance to the target node is
7.477km with a standard deviation of 2.831km. On the arena of Malta, the mean
distance to the target node for the winning guesses is 4.345km with a standard deviation
of 1.939km.

4.6 Collected results

4.6.1 Results

The results for the tests with 100.000 iterations for all five different hedging strategies
are shown in Tab. 4.6. Furthermore, as the hedging strategy Divide and Conqer has
been tested with two traversal directions, A and B, Tab. 4.6 includes the results for
both.

Because Tab. 4.6 only summarizes the results for the tests with 100.000 iterations,
the first half of the rows concern the results for the arena of Bornholm, whereas the last
half of the rows relate to the tests conducted in the arena of Malta.

4.6.2 Summary

As Tab. 4.6 only offers a collected overview for both arenas with no sorting or declaration
of interrelationships in terms of relative improvements, Tab. 4.7 is created. To fewer the
amount of rows and values the standard deviations have been excluded from Tab. 4.7.
Furthermore, Tab. 4.7 only shows the values for the winning guesses.

However, the hedging strategies have been sorted by their mean distance to the
target node of the winning guesses, and the increase in distance to the target node for
each hedging strategy compared to the best hedging strategy is calculated and shown
in percentage.

The test results for all hedging strategies using 100.000 iterations in Tab. 4.7 shows,
that the best hedging strategy for both the arena of Bornholm and Malta is K-Means
Clustering.

In the network of Bornholm, K-Means Clustering is 2.407% better that the second-
best hedging strategy, Closeness Centrality, and 54.768% better than the worst hedging
strategy, Random Guess in Network.
In the network of Malta, K-Means Clustering is 19.908% better that the second-best
hedging strategy, Divide and Conquer B, and 151.208% better than the worst hedging
strategy, Divide and Conquer A.

For both the arena of Bornholm and Malta, the upper half consists of the hedg-
ing strategies Closeness Centrality, Divide and Conquer B, and K-Means Clustering,
whereas the lower half consists of the hedging strategies Divide and Conquer A, Random
Guess in Convex Hull, and Random Guess in Network. The percentage gap between

46

Table 4.6: Results of all hedging strategies with 100.000 iterations

Arena Hedging strategy Measure All [km] Winning [km]

Bornholm

Random Guess in Network
Mean 20.934 11.572
σ 11.855 7.420

Random Guess in Convex Hull
Mean 20.012 11.425
σ 11.062 6.963

Divide and Conquer A
Mean 17.226 11.167
σ 8.056 5.676

Divide and Conquer B
Mean 18.713 8.084
σ 10.674 3.123

Closeness Centrality
Mean 19.501 7.657
σ 11.624 2.903

K-Means Clustering
Mean 19.362 7.477
σ 11.531 2.831

Malta

Random Guess in Network
Mean 13.684 7.298
σ 10.215 6.357

Random Guess in Convex Hull
Mean 15.740 8.238
σ 9.800 5.623

Divide and Conquer A
Mean 12.740 10.915
σ 5.518 5.461

Divide and Conquer B
Mean 12.956 5.210
σ 8.980 3.016

Closeness Centrality
Mean 12.069 5.356
σ 8.634 4.078

K-Means Clustering
Mean 15.282 4.345
σ 11.146 1.939

these two halves is 45.361% for Bornholm and 44.695% for Malta. This gap between
the upper and lower halves of the test results for Bornholm and Malta is the largest in-
termediary gap for Bornholm and the second-largest intermediary gap for Malta. Only
the gap between Random Guess in Convex Hull and Divide and Conquer A is larger
for Malta.

47

Table 4.7: Sorted results of all hedging strategies with 100.000 iterations with the percentages of relative distance
increasements for the mean of best guesses

Arena Hedging strategy
Mean of
winning
guess

Relative
increase
to best
strategy

Bornholm

K-Means Clustering 7.477
Closeness Centrality 7.657 2.407%
Divide and Conquer B 8.084 8.084%
Divide and Conquer A 11.167 49.351%
Random Guess in Convex Hull 11.425 52.802%
Random Guess in Network 11.572 54.768%

Malta

K-Means Clustering 4.345
Divide and Conquer B 5.210 19.908%
Closeness Centrality 5.356 23.268%
Random Guess in Network 7.298 67.963%
Random Guess in Convex Hull 8.238 89.597%
Divide and Conquer A 10.915 151.208%

48

Chapter 5

Discussion

In this chapter, the implemented and tested hedging strategies will be discussed in
section 5.1. It offers remarks on the results of the individual arenas as well as comments
on general observations and tendencies. In section 5.2, the research on hedging strategies
and applied algorithmic procedures will be related to existing work for the purpose of
exploring synergies. Limitations for the presented research are discussed in section 5.3,
where computational limitations, limitations for the k-means algorithm, the validity
of OSM data, and the result replication for arbitrary arenas will be discussed. The
applicability of the conducted research in other domains is discussed and explored in
section 5.4. Finally, section 5.5 provides suggestions for future research.

5.1 Comparison of Results
The hedging strategy K-Means Clustering is found to be the best hedging strategy for
both Bornholm and Malta. Compared to the second-best hedging strategy for Born-
holm, the Closeness Centrality hedging strategy, the K-Means Clustering is 2.407%
better. For the arena of Malta, the K-Means Clustering hedging strategy is 19.908%
better than the second-best hedging strategy Divide and Conquer B.

Besides manifesting a common winning hedging strategy, the K-Means Clustering
hedging strategy, the comparison of the two best hedging strategies also displays an
interesting observation: the second-best hedging strategy for Bornholm is only 2.407%
less optimal than the winning hedging strategy, whereas for Malta this difference is
19.908%.

Reasoning for these results can be obtained visually by studying both the divi-
sions and resulting guesses thereof for the hedging strategies, K-Means Clustering and
Closeness Centrality on Bornholm, as shown in Fig. 5.1.

49

Figure 5.1: An inspection of the two best hedging strategies for Bornholm, K-Means Clustering (left) and Closeness
Centrality (right)

Even though the divisions of the network for the two hedging strategies have been
obtained from fundamentally different computations, both the sub-networks and the
guesses are very similar.

Recalling from Alg. 5, the basis for the divisions of the network has a rationale in
a fairness principle of each division comprising of 1

3 of the total weight of the network,
whereas the divisions created by Alg. 6 have no such requirements.

The Closeness Centrality hedging strategy has its traversal direction dictate the
greater shape of the diagonals of the resulting convex hulls. The K-Means Clustering
hedging strategy has no such predefined traversal technique, however the resulting divi-
sions of the two hedging strategies are remarkably alike. Also for the k-Means Clustering
hedging strategy, the resulting divisions have a slight diagonal feature, that is in the
same diagonal direction as the traversal direction B used for the Closeness Centrality
hedging strategy.

Placing the guesses within the divisions - the clusters for K-Means Clustering and
the convex hulls for Closeness Centrality - also share similarities and differences. Both
hedging strategies place the guesses based on a search for a minimum total distance
within the division. However, the K-Means Clustering hedging strategy is not bound to
place its guess in the network, whereas the Closeness Centrality hedging strategy has
this condition.

Comparing the three guesses resulting from the two best hedging strategies from
left to right, the following distance differences are calculated: 2.363km, 3.495km, and
1.183km. Recollecting that the two hedging strategies use both different algorithmic
techniques to divide the network and place the guesses, these minor differences are
remarkable.

This similarity between the guesses from K-Means Clustering and Closeness Cen-
trality should be considered as an isolated case, as changing n, the number of guesses,

50

will result in non-similar guesses. This hypothesis is tested and visualized in Fig. 5.2.

Figure 5.2: An inspection of the two hedging strategies, K-Means Clustering (left) and Closeness Centrality (right), for
Bornholm with n = 4

As the K-Means Clustering hedging strategy is not procedurally bound to traverse in
diagonals when creating clusters as it utilizes the k-means algorithm, the divisions and
guesses differentiate substantially with n = 4.

The reasoning for the substantial distance difference between the best hedging strategy,
K-Means Clustering, and the second-best hedging strategy, Divide and Conquer B, for
the arena of Malta is predominantly based on the algorithmic procedures for dividing
the network.

Unlike the Divide and Conquer B hedging strategy, the K-Means Clustering hedg-
ing strategy is not bound to divide the network of the arena into divisions of equal
weight. This is due to the native clustering procedure of the k-means algorithm. There-
fore, as also visualized in Fig. 3.10b, the northwestern island of Malta, Gozo, becomes
its own cluster due to its sub-networks distance to the rest of the network.

In order for the hedging strategy Divide and Conquer B to obtain such an isolation
of Gozo, the only parameter to change is n, the number of guesses. For all hedging
strategies Divide and Conquer A, Divide and Conger B, and Closeness Centrality there
exists a direct correlation between the sizes of the divisions in terms of weight and the
number of guesses, as the network is divided into n equally weighted sub-networks.
Furthermore, the diagonal traversal direction should be selected accurately to fit the
purpose.

If the hedging strategy Divide and Conquer B is to isolate Gozo in one division as
the hedging strategy K-Means Clustering does, it would require the parameter n to be
7 as visualized in Fig. 5.3.

51

Figure 5.3: An inspection of the two hedging strategies, K-Means Clustering (left) and Divide and Conquer B (right),
for Bornholm with n = 7

Fig. 5.3 shows that if n = 7 the sub-network on the island of Gozo is isolated into a divi-
sion when using the hedging strategy Divide and Conquer B on Malta. However, when
setting the parameter n = 7 for the K-Means Clustering hedging strategy, the island of
Gozo is still isolated. This underlines the native qualities of the k-means algorithm.

Another interesting observation of the results can be found in the second-best and
third-best hedging strategy for the two arenas. For the arena of Bornholm, the second-
best hedging strategy is Closeness Centrality, and the third-best hedging strategy is
Divide and Conquer B. The opposite ranking is the case for Malta, where the second-
best hedging strategy is Divide and Conquer B, and the third-best hedging strategy is
Closeness Centrality.

As observable on the guesses on Malta placed by the winning hedging strategy, K-
Means Clustering, the northwestern guess is located on the island of Gozo. Comparing
the northwestern guesses on Malta of the two hedging strategies Divide and Conquer B
and Closeness Centrality, it can be concluded that Divide and Conquer B places its guess
more northwest than Closeness Centrality. The other two guesses don’t differentiate
nearly as much.

Computing the distance differences for the guesses on Malta by Divide and Con-
quer B and Closeness Centrality from left to right gives the following results: 3.490km,
1.918km, and 1.238km. The calculations show, that the biggest distance difference be-
tween the guesses is found for the most northwestern guess, which supports the hypoth-
esis of an optimal guess, as demonstrated by the hedging strategy K-Means Clustering,
lies on the island of Gozo.

In the case of Bornholm, the ranking is the opposite: the second-best hedging
strategy is Closeness Centrality and the third-best hedging strategy is Divide and Con-
quer B. This is because the algorithmic procedure of the underlying divisioning of the
network is the same, however the inter-placement strategy for the guesses within these

52

divisions differs. The hedging strategy Divide and Conquer B places its guesses within
the divisions based on the midpoints, also known as the geometric centroids, whereas
the hedging strategy Closeness Centrality places its guesses based on the most central
node given by the closeness centrality score.

As no big area of sea with no network is dividing the collected subnetwork within
the divisions, the higher precision based on a centrality analysis given by the closeness
centrality score is outperforming the more simplistic approach of using the midpoints.
The distance differences for the guesses from left to right are calculated with the fol-
lowing results: 4.292km, 1.343km, and 3.144km.

Fig. 5.4 shows a comparison of the two hedging strategies, Divide and Conquer B
and Closeness Centrality, on both the arenas of Bornholm and Malta.

Figure 5.4: An inspection of the second-best and the third-best hedging strategies, Closeness Centrality and Divide and
Conquer B, for Bornholm and Malta

The guesses made by the hedging strategies Divide and Conquer B and Closeness Cen-
trality are seemingly alike, as Fig. 5.4 illustrates.

However, the minor differences discussed are evidently decisive enough to rank the
hedging strategies differently for the two arenas.

As also discussed in [49], choosing a traversal direction for the hedging strategies Divide
and Conquer, that does not follow the shape of the arena, is a better choice. However,
[49] does not test this hypothesis.

This thesis has shown by implementation and thorough testing, that the claim
holds. For the arena of Bornholm when comparing the results for the mean of best
guesses after 100.000 iterations, the Divide and Conquer B hedging strategy using
traversal direction B is 45.361% better than the hedging strategy Divide and Conquer
A using traversal direction A.

When comparing the mean of best guesses after 100.000 iterations for the arena

53

of Malta, the Divide and Conquer B hedging strategy using traversal direction B is
131.300% better than the hedging strategy Divide and Conquer A using traversal direc-
tion A. The increase in relative distance difference is presumably due to the narrower
shape of Malta compared to Bornholm.

As the results show in Tab. 4.7, the hedging strategies Divide and Conquer B
and Closeness Centrality, which are both using the same diagonal traversal procedure
for divisioning the network, are ranked within the second-best and third-best hedging
strategy. These results do not make the hedging strategies competitive with the hedging
strategy K-Means Clustering however, as of now they still require a manual judgment
on which traversal direction to put in use.

The native qualities of the hedging strategy K-Means Clustering is capable of
divisioning - in this case, clustering - the network on its own without any preconditions
of inputs or parameters declaring the shape of the arena.

Examples can be found, where the use of traversal direction A outperforms traversal
direction B. Fig. 5.5 shows two images of the main island of Grenada. The left image
uses the hedging strategy Divide and Conquer A, whereas the image to the right uses
the same hedging strategy but with traversal direction B.

Figure 5.5: A comparison of traversal direction A (left) and B (right) on the main island of Grenada

Unlike the shape of Bornholm and Malta, the main island of Grenada, as also shown in
appendix C and F, has a diagonal shape parallel to traversal direction B, which makes
traversal direction A an intuitively better choice.

This hypothesis is explored, and therefore the hedging strategies Divide and Con-
quer A and Divide and Conquer B are tested with 100.000 iterations.

54

The mean distance to the target for the winning guess of Divide and Conquer A is
2.991km with a standard deviation of 1.297km, whereas the mean distance to the target
for the winning guess of Divide and Conquer B is 4.975km with a standard deviation
of 2.290km.

Tests have shown, that for the main island of Grenada, unlike Bornholm and Malta,
using traversal direction A implies better results. For the case of Grenada specifically,
using the diagonal traversal A compared to direction B yields 66.332% better results in
combination with the general Divide and Conquer approach.

5.2 Synergy with Other Research
The research presented in this thesis has the assumption, that the players know in which
region or country the target is located.

Even though this assumption is not far-fetched, as seen in [24] due to the tells and
techniques described in among others [58], an automated way of narrowing the arena
would statistically yield better results for the presented hedging strategies in sections
3.2-3.6.

Exactly this task is described by [68], [70], and [59], in which each study also
proposes a solution.

As described in section 2.1.2, [68] proposes a neural network that is trained with
images from the United States of America. Each state contributes an equal amount of
test data. However, [68] offers no following guidance on how to precisely place a guess
within a region after the classification problem has been solved.

In [70] a model is proposed that, based on the data used for its training, divides
the entire world into envelopes of uneven sizes. For example, small envelopes exist
especially in certain parts of Europe, because a substantial part of the scraped imagery
has EXIF data disclosing a European location. As with [68], also [70] has no technique
for placing guesses within a division. The model simply chooses the: "the center of the
highest confidence [...] cell as its guess" [70].

Correspondingly [59] proposes a model that is similar to [68] and [70]. However,
instead of narrowing the arena down to one state of the United States of America or a
cell of the entire world, [59] aims to output the correct country.

At this point, the research and developed hedging strategies presented in this thesis
have the ability to contribute to the published research. As the K-Means Clustering
hedging strategy has proved to be outperforming the other proposed hedging strategies
on both Bornholm and Malta, it could be applied to either the states of the United
States of America, the cells described in [70] or the countries of the world and precal-
culate guesses.

Another possibility for combining the models presented in [68], [70], and [59] with
the hedging strategies developed in this thesis is to test all hedging strategies for either
each state of the United States of America, the cells described in [70] or the countries of

55

the world and choose the winning strategy. Although the K-Means Clustering hedging
strategy has proven to be the winning strategy for the arenas of Bornholm and Malta,
it can not be precluded that there exist arenas, for which one of the other proposed
hedging strategies has better results.

All the models proposed by [68], [70], and [59] eventually produce a ranking of the
most plausible regions being either a state, a cell, or a country. To possibly obtain a
better result, a cross-research twofold strategy can be comprised. First, take the three
most plausible regions. Second, compose a collected network of these regions, create an
arena, and use one of the hedging strategies proposed in this thesis.

If the three most plausible regions are not neighboring, the most promising hedging
strategy would presumably be K-Means clustering, as it would create a cluster and guess
for each region. If the plausible regions consist of neighboring states, cells, or countries,
all hedging strategies should be tested.

5.3 Limitations

5.3.1 Computational Limitations

All the hedging strategies require the prerequisites of a fetched network that has been
parsed into a graph. However, following this step, the computational complexity varies
for each of them.

The random hedging strategies, Random Guess in Network and Random Guess in Con-
vex Hull require the least computational efforts. The convex hull of a set of nodes, N ,
can be computed with the time complexity of O(N log N), and placing a random guess
either in the network or within a polygon is possible in constant time [26].

The hedging strategy Divide and Conquer, regardless of the diagonal traversal direction,
uses further data preprocessing and calculations for generating its guesses.

Initially, the data structure representing roads is iterated through to extract all
nodes. Followed by this iteration, the nodes are mapped to their respective grid cells.
Assuming N to be the number of translated weighted center points of the network, this
operation has the time complexity of O(N).

Thereafter the convex hulls are calculated for each of the n greater divisions, where
n is the number of guesses. Calculating the convex hull of a set of points has the time
complexity of O(N log N), where N is the number of points [26]. The calculation of
the convex hulls uses the points of the bounding boxes of the grid cells in each of the n

greater divisions.
The geometric centroid has to be extracted for each of the n convex hulls with time

complexity of O(p), where p is the number of points for each of the polygons [38].

As for the hedging strategy Divide and Conquer, also Closeness Centrality initially
iterates through the data structure representing the roads of the network in order to

56

store all of the center points of the edges and their weights. This data preprocessing
step has the time complexity of O(N), where N is the number of translated weighted
center points in the network.

Followed by that, the convex hulls are computed with time complexity O(b log b),
where b is the number of points of the bounding boxes of the grid cells [26].

Now, unlike the Divide and Conquer hedging strategy, where the geometric cen-
troids are computed, the Closeness Centrality hedging strategy computes for each center
point within the convex hulls the total weighted distance to all other center points.

The widely adopted version of the closeness centrality measure, which uses a short-
est path algorithm to determine the closeness score, can be optimized in certain ways.
A general text-book implementation would require calculating the shortest path from
each node to all other nodes [41]. However, the Closeness Centrality hedging strategy is
not interested in the shortest path, as it requires the score based on the weighted haver-
sine distance. The calculation of the closeness centrality scores has a time complexity
of O(N2), where N is the number of weighted points and thereby equals the number of
edges, E, of the network.

As for the other non-random hedging strategies, also the K-Means Clustering hedg-
ing strategy requires data preprocessing, that translates the edges of the network into
weighted center points with the time complexity of O(N), where N is the number of
translated center points.

Hereafter, the k-means algorithm is employed. The task is NP-hard, yet the cal-
culation of approximations can be done feasibly. An agreed-upon time complexity of
the k-means algorithm has been challenging to find, partly because the actual running
time of the algorithm is greatly dependent on the input and initial clustering [55] [28].

Some procedures, however, can be estimated. Each iteration, 1..i requires the cal-
culation of the distance from each node to each centroid. Subsequently, the centroids
are recalculated with time complexity equal to the number of points for each cluster [72].
Given that N is the number of weighted center points and k is the number of guesses,
the time complexity of the used k-means algorithm can be expressed as O(i k N).

As both the hedging strategies Closeness Centrality and K-Means Clustering are rapidly
increasing in computational complexity by both the size of the network and other pa-
rameters, simplifications of the studied networks can be constructed to keep the com-
putations in a feasible state.

The implementation of the Closeness Centrality hedging strategy shows, that such
a simplification is offered as a parameter [23]. The simplification parameter, s, groups s

nearby weighted center points, by creating a new replacement point that has the center
coordinates of the s center points paired with the sum of the s center points’ weights.

Using the simplification parameter s will thereby reduce the input size by a factor
of approximately s. It will not exactly result in a reduction factor equal to itself, as
edges can be comprised of a number of nodes, that modulo s leaves a remainder.

57

5.3.2 K-means Limitations

Most implementations of the k-means algorithm do not promise a global optimum, as the
task of computing this is infeasible for most data sets. Instead, the algorithm converges
into local optima. The clustering and resulting centroids are in many cases changing
for each calculation [42]. Arguing that the hedging strategy K-Means Clustering is an
optimal solution, therefore, becomes unattainable.

The initial selection of centroids is influential on the final clustering, as "the kmeans
clustering algorithm greatly depends upon the correctness of the initial centroids" [73].
However, with clever procedures for placing the initial centroids, as described by [73],
[43], and many others, a consistently acceptable final clustering can be obtained.

As seen in Fig. 3.12 that displays the final clusters when the initial centroids are
chosen randomly, the outcome varies greatly. This was the predominant reason for
choosing the k-means function by sklearn, as it offers the possibility to optimize the
initial centroid positions.

Because the K-Means Clustering hedging strategy uses a k-means algorithm that cal-
culates Euclidean distances from the nodes to the centroids, some margin of error is
introduced. The curvature of the Earth requires the use of a haversine distance calcu-
lation between two points [71].

To investigate the potential size of the introduced error margin, the greatest pos-
sible span between two nodes is identified. This process is visualized in Fig. 5.6.

Figure 5.6: An inspection of the maximum span between two nodes in the networks of Bornholm (left) and Malta (right)

As seen in Fig. 5.6, the greatest distance between two nodes, n1 and n2, in each of the
networks is respectively 51.32km for Bornholm and 46.16km for Malta. An examination
is conducted for each arena, where the mean of the coordinates is saved as mcoords.

As a control experiment, expeuc, the total Euclidean distance from n1 to n2 is calcu-
lated and saved as euctotal. Now the half-distance, euchalf is calculated from arbitrarily

58

n1 or n2 to mcoords. The results show, that euchalf is exactly 1
2 of euctotal.

Similar to expeuc, an experiment is conducted, exphav, that initially calculates the
total haversine distance from n1 to n2 and saves the result as havtotal. The result,
havtotal, equals the distances shown in Fig. 5.6. Now the half-distance, havhalf is calcu-
lated from arbitrarily n1 or n2 to mcoords. The results show, that havhalf is not exactly
1
2 of havtotal, but is slightly off. The half-distances accord to respectively the half +/- a
small corrective. This is due to the curvature of the Earth. For Bornholm, the distance
is 0.006% off for the half distance, and for Malta, the distance is 0.014% off for the half
distance.

In other words, using Euclidean distance measurements as compensation for using
haversine distance measurements introduces a small error margin. However, for larger
regions, especially close to the poles (Russian, Canada, etc.), distortions may be signif-
icantly larger.

The potential error margin introduced by using Euclidean distance calculations in the
clusters can also be tested on the final clustering by examining whether or not the nodes
of a cluster are actually closest to the assigned centroid.

This control procedure can be implemented for the solution with time complexity
of O(n N), where n is the number of guesses and N is the total number of nodes.

Fig. 5.7 shows this investigation. It visualizes with the highlighted white circles,
that the nodes assigned to the wrong centroids are located close to the dividing borders
of the clusters.

A total of 80 wrongly assigned nodes are found for the resulting clusters of Born-
holm, which is equal to 0.306% of the total amount of nodes.

For Malta, a total of 251 wrongly assigned nodes are found for the resulting clusters,
which is equal to 0.296% of the total amount of nodes.

Figure 5.7: Nodes assigned to the wrong centroids during clustering in the networks of Bornholm (left) and Malta
(right)

59

5.3.3 Validity of OSM Data

The imagery presented in GeoGuessr stems from Google Street View and thereby also
uses the underlying geospatial data by Google. The geospatial data used and parsed
into geospatial networks in this thesis originates from OSM, which presents two possible
impediments to data correctness.

First, since the data sources used in GeoGuessr and for this thesis do not share the
same origin, there might be potential misalignments for the networks.

Second, the validity of OSM data itself has been questioned by multiple sources.
[48] states, that "OSM faces the challenge of ensuring data quality", since the contrib-
utors and data collectors are largely non-professionals. Also [25] states, that "this kind
of contribution mechanism is usually associated with data quality issues".

The contribution model allows users to submit various and elaborate descriptions
as documented in Tab. 2.1, however "it is not possible to access ground-truth spatial
data" [61].

Both [54] and [50] try to compare the geospatial data from OSM with other data
providers and true positional data. [50] concludes, that the "[q]uality differs locally,
and even in a single town the different aspects of quality may vary", while the studies
of [54] "shows highest correlation between OSM/[TomTom] and their true position, but
the [TomTom] dataset has less distortion than OSM".

The isolated use of OSM data with the tested hedging strategies and their underly-
ing algorithmic procedures does not suffer from a potential data quality issue. However,
using the hedging strategies within the domain of GeoGuessr, that is using a different
data source, might introduce small inaccuracies.

5.4 Applicability in Other Domains
Apart from applications within the game GeoGuessr, several other domains might ben-
efit from using the proposed hedging strategies presented in section 3.2-3.6, especially
the K-Means Clustering hedging strategy and customized varieties of it.

The warehouse location problem has been investigated and studied in multiple pub-
lished research, among others in [33], [52], [40], and [45]. In short, solutions to the
problem aims to "choose the location of the warehouse[s] or distribution center[s] to
maximize efficiency" [53].

The K-Means Clustering hedging strategy presented in this thesis can be applied
to the problem, however some customizations of both the network and the hedging
strategy have to be implemented.

First, the network should instead of representing driveable roads represent possible
delivery destinations. These possible delivery destinations are both private households,
companies, and most importantly parcel lockers and partnered parcel shops.

Second, the customized K-Means Clustering hedging strategy should weight these
possible delivery destinations individually based on their type. The frequency of deliv-

60

ering packages to a private household address is lower than the frequency of delivering
packages to companies, parcel lockers, and partnered parcel shops.

The resulting clustering should therefore account for both the distance to the po-
tential delivery destinations and their types. Fig. 5.8 shows a customization of the
K-Means Clustering hedging strategy, that aims to solve a warehouse location problem
of size n = 3, where n is the number of warehouses.

Figure 5.8: A solution to the warehouse location problem for Bornholm (left) and Malta (right)

Compared to a weighting based on the length of the road section each node represent,
the resulting clusters and centroid placements resulting from the K-Means Clustering
hedging strategy are significantly different.

The weighting used for the implementation of the warehouse location problem is
based on the type of the node. For the test visualized in Fig. 5.8, a normal node
(center-point) representing a private household, is given the weight w = 0.1. Nodes
representing companies are weighted with w = 500. Finally, nodes representing parcel
lockers and partnered parcel shops have the weight w = 1000. These weights are
customizable parameters in the implementation [23]. The warehouses are placed based
on the resulting centroids from the weighted k-means clustering.

Customizing the K-Means Clustering hedging strategy to find a solution to the
warehouse location problem demonstrates, that the research of this thesis indeed has
geospatial applications apart from GeoGuessr.

Also within the domain of electric vehicle charging, the proposed hedging strategy K-
Means Clustering can be customized to find locations for charging stations. In this case,
the network and the weighting of its nodes would not have to be translated, because
the network should resemble driveable roads.

When running the algorithm on a network, the longest distance from a node to its
assigned centroid, maxdist can be stored during the execution. Following a given maxi-
mum distance requirement, reqmin, the number of clusters n, representing the number

61

of charging stations, can be incremented until maxdist adheres to reqmin.

The same customization for a possible application within the positioning of electrical
vehicle charging stations can be used within the domain of telecommunication infras-
tructure.

Where road infrastructure is established, people either live or travel. From this
follows, that the entirety of a road network must be covered by cell sites for its residing
population or visiting travelers to be online.

The algorithm can be executed 1..n times, where n is the number of cell sites, until
the maximum distance from a node to its assigned centroid, maxdist, ensures coverage.

5.5 Future Research
As described in section 5.2, the research presented in this thesis is compatible with the
models from [68], [70], and [59].

The models narrow the location of the target down to a state, area, or country,
whereas the proposed hedging strategies place guesses based on an analysis of the net-
work within these convolutions.

In particular, future research should implement the K-Means Clustering hedging
strategy in the extension of [68], [70], and [59] for optimized geolocation.

The players of GeoGuessr usually know, in which country the target is located. There-
fore, future research might take up the task to compute guesses for all the countries
of the world, that are covered by Google Street View, using the K-Means Clustering
hedging strategy.

Such an effort would produce a list of pre-calculated guesses for each country.
Following the creation of the list, the guesses resulting from the K-Means Clustering
hedging strategy can be compared to guesses made by the professional players of Geo-
Guessr.

62

Chapter 6

Conclusion

The problem of geolocating has been extensively studied from two perspectives. First,
much research has been centered around human performance by investigating and map-
ping the reflections of professionals. Second, many neural networks and models have
been created and trained with the purpose of geolocating from imagery. However, this
thesis uses analytical methods and algorithmic procedures to precompute centralities in
a geospatial network.

Five different hedging strategies were implemented and tested: Random Guess in
Network, Random Guess in Convex Hull, Divide and Conquer, Closeness Centrality,
and K-Means Clustering. The results showed, that the K-Means Clustering hedging
strategy was 2.4% better than the second-best hedging strategy and 54.8% better than
the worst hedging strategy in the arena of Bornholm. For Malta, the K-Means Clsutering
hedging strategy was 19.9% better than the second-best hedging strategy and 151.2%
better than the worst hedging strategy. The results were discussed, and the assumption
of the correlation between the diagonal traversal direction and the shape of the arena
was tested and confirmed on the main island of Grenada.

The discussion of the computational limitations revealed that optimizations and
simplifications are needed for two of the hedging strategies, Closeness Centrality and
K-Means Clustering, if the network size reaches a critical size. Such a simplification
procedure of the geospatial network was successfully implemented and tested for the
Closeness Centrality hedging strategy. Limitations when applying the k-means algo-
rithm with geospatial data were discussed and in particular, the margin of error intro-
duced by using Euclidean distances instead of haversine distances was investigated and
reported.

Possible applications of the research and in particular the K-Means Clustering
hedging strategy were explored. The K-Means Clustering was customized to solve the
warehouse location problem by introducing new attributes to the nodes of the network.
The potential applications within the domains of telecommunication infrastructure and
electric vehicle charging stations were discussed.

Future research lies in using the K-Means Clustering hedging strategy to precom-
pute guesses for each country of the world, that is covered by Google Street View. An
effort should also be made to combine the work presented in this thesis with existing
research and geolocating models.

63

Bibliography

[1] "BrandWatch". url: https : / / www . brandwatch . com / email / brandwatch -
bulletin-0098-geoguessr/ (visited on 04/12/2023) (cit. on pp. 8, 9).

[2] "GeoGuessr". url: https://www.geoguessr.com/ (visited on 04/12/2023) (cit.
on p. 8).

[3] "GeoPandas centroid". url: https : / / geopandas . org / en / stable / docs /
user_guide/geometric_manipulations.html#GeoSeries.centroid (visited
on 04/24/2023) (cit. on p. 32).

[4] "GeoPandas convex_hull". url: https://geopandas.org/en/stable/docs/
reference / api / geopandas . GeoSeries . convex _ hull . html (visited on
04/24/2023) (cit. on pp. 28, 32).

[5] "GeoPandas". url: https://geopandas.org/en/stable/index.html (visited
on 04/24/2023) (cit. on p. 28).

[6] "Google Street View". url: https://www.google.dk/intl/en/streetview/
(visited on 04/12/2023) (cit. on p. 8).

[7] "Map of Bornholm". url: https://www.openstreetmap.org/#map=11/55.1593/
14.8734 (visited on 04/12/2023) (cit. on pp. 23, 70).

[8] "Map of Grenada (main island)". url: https : / / www . openstreetmap . org /
search?query=grenada#map=12/12.1154/-61.6882 (visited on 05/09/2023)
(cit. on p. 72).

[9] "Map of Malta". url: https://www.openstreetmap.org/search?query=malta#
map=12/35.9377/14.3517 (visited on 04/17/2023) (cit. on pp. 23, 71).

[10] "Merriam-Webster". url: https://www.merriam-webster.com/dictionary/
geospatial (visited on 04/14/2023) (cit. on p. 14).

[11] "NetworkX Closeness Centrality". url: https://networkx.org/documentation/
stable / reference / algorithms / generated / networkx . algorithms .
centrality . closeness _ centrality . html (visited on 04/12/2023) (cit. on
pp. 17, 35).

[12] "NetworkX compose_all". url: https : / / networkx . org / documentation /
stable / reference / algorithms / generated / networkx . algorithms .
operators.all.compose_all.html#compose-all (visited on 04/24/2023) (cit.
on p. 23).

[13] "NetworkX". url: https://networkx.org/documentation/stable/ (visited on
04/24/2023) (cit. on p. 23).

[14] "OpenStreetMap". url: https : / / www . openstreetmap . org/ (visited on
04/12/2023) (cit. on pp. 11, 14).

64

https://www.brandwatch.com/email/brandwatch-bulletin-0098-geoguessr/
https://www.brandwatch.com/email/brandwatch-bulletin-0098-geoguessr/
https://www.geoguessr.com/
https://geopandas.org/en/stable/docs/user_guide/geometric_manipulations.html#GeoSeries.centroid
https://geopandas.org/en/stable/docs/user_guide/geometric_manipulations.html#GeoSeries.centroid
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.convex_hull.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.convex_hull.html
https://geopandas.org/en/stable/index.html
https://www.google.dk/intl/en/streetview/
https://www.openstreetmap.org/#map=11/55.1593/14.8734
https://www.openstreetmap.org/#map=11/55.1593/14.8734
https://www.openstreetmap.org/search?query=grenada#map=12/12.1154/-61.6882
https://www.openstreetmap.org/search?query=grenada#map=12/12.1154/-61.6882
https://www.openstreetmap.org/search?query=malta#map=12/35.9377/14.3517
https://www.openstreetmap.org/search?query=malta#map=12/35.9377/14.3517
https://www.merriam-webster.com/dictionary/geospatial
https://www.merriam-webster.com/dictionary/geospatial
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.all.compose_all.html#compose-all
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.all.compose_all.html#compose-all
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.all.compose_all.html#compose-all
https://networkx.org/documentation/stable/
https://www.openstreetmap.org/

[15] "OSMnx graph_from_bbox". url: https://osmnx.readthedocs.io/en/stable/
osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_bbox
(visited on 04/24/2023) (cit. on p. 23).

[16] "OSMnx graph_from_place". url: https : / / osmnx . readthedocs . io / en /
stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_
from_place (visited on 04/24/2023) (cit. on p. 23).

[17] "OSMnx sample_points. url: https://osmnx.readthedocs.io/en/stable/
osmnx.html?highlight=sample_points#osmnx.utils_geo.sample_points
(visited on 04/24/2023) (cit. on pp. 24, 25).

[18] "OSMnx". url: https : / / osmnx . readthedocs . io / en / stable / index . html
(visited on 04/24/2023) (cit. on p. 23).

[19] "sklearn data generation". url: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_blobs.html (visited on 04/12/2023) (cit.
on p. 20).

[20] "sklearn DBSCAN". url: https : / / scikit - learn . org / stable / modules /
generated/sklearn.cluster.DBSCAN.html (visited on 04/24/2023) (cit. on
p. 37).

[21] "sklearn fit". url: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit (visited on
04/24/2023) (cit. on p. 39).

[22] "sklearn k-means". url: https : / / scikit - learn . org / stable / modules /
generated/sklearn.cluster.KMeans.html (visited on 04/12/2023) (cit. on
pp. 20, 37–39).

[23] "Thesis GitHub repository". url: https : / / github . com /
MissingClosingBracket / GeoGuessrThesis (visited on 04/17/2023) (cit.
on pp. 17, 57, 61).

[24] "YouTube". url: https://youtu.be/kv8-oaI6Avk?t=82 (visited on 04/12/2023)
(cit. on pp. 9, 55).

[25] Ahmed Loai Ali et al. “Ambiguity and plausibility: managing classification quality
in volunteered geographic information”. Proceedings of the 22nd ACM SIGSPA-
TIAL international conference on advances in geographic information systems.
2014, pp. 143–152 (cit. on p. 60).

[26] Donald C. S. Allison and MT Noga. “Some performance tests of convex hull al-
gorithms”. In: BIT Numerical Mathematics 24 (1984), pp. 2–13 (cit. on pp. 56,
57).

[27] Renato Cordeiro de Amorim. “An Empirical Evaluation of Different Initializa-
tions on the Number of K-Means Iterations”. Advances in Artificial Intelligence.
Springer Berlin Heidelberg, 2013, pp. 15–26 (cit. on p. 20).

65

https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_bbox
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_bbox
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_place
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_place
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=graph_from_place#osmnx.graph.graph_from_place
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=sample_points#osmnx.utils_geo.sample_points
https://osmnx.readthedocs.io/en/stable/osmnx.html?highlight=sample_points#osmnx.utils_geo.sample_points
https://osmnx.readthedocs.io/en/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/MissingClosingBracket/GeoGuessrThesis
https://github.com/MissingClosingBracket/GeoGuessrThesis
https://youtu.be/kv8-oaI6Avk?t=82

[28] David Arthur and Sergei Vassilvitskii. “How slow is the k-means method?” Pro-
ceedings of the twenty-second annual symposium on Computational geometry.
2006, pp. 144–153 (cit. on p. 57).

[29] Andleeb Aslam et al. “Improving K-Mean Method by Finding Initial Centroid
Points”. 2020 22nd International Conference on Advanced Communication Tech-
nology (ICACT). 2020, pp. 624–627 (cit. on p. 22).

[30] Merhad Ay et al. “FC-Kmeans: Fixed-centered K-means algorithm”. In: Expert
Systems with Applications 211 (2023), p. 118656 (cit. on p. 19).

[31] Sayan Bandyapadhyay et al. “Voronoi game on graphs”. In: Theoretical Computer
Science 562 (2015), pp. 270–282 (cit. on p. 13).

[32] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. “The quickhull algo-
rithm for convex hulls”. In: ACM Transactions on Mathematical Software (TOMS)
22.4 (1996), pp. 469–483 (cit. on p. 27).

[33] William J Baumol and Philip Wolfe. “A warehouse-location problem”. In: Opera-
tions research 6.2 (1958), pp. 252–263 (cit. on p. 60).

[34] Surbhi Bhatia. “New improved technique for initial cluster centers of K means
clustering using Genetic Algorithm”. International Conference for Convergence
for Technology-2014. 2014, pp. 1–4 (cit. on p. 22).

[35] Johannes Blömer et al. “Theoretical analysis of the k-means algorithm–a survey”.
In: Algorithm Engineering: Selected Results and Surveys (2016), pp. 81–116 (cit.
on p. 19).

[36] Álvaro Gutiérrez Cáceres. “Strategy in Geoguessr: Games of competitive Euclidean
geometry” (2022) (cit. on p. 13).

[37] Shuang Chen, Junli Li, and Xiuying Wang. “A Fast Exact Euclidean Distance
Transform Algorithm”. 2011 Sixth International Conference on Image and Graph-
ics. 2011, pp. 45–49 (cit. on p. 16).

[38] Matthew Díaz and Joseph O’Rourke. “Algorithms for computing the center of area
of a convex polygon”. In: The Visual Computer 10.8 (1994), pp. 432–442 (cit. on
p. 56).

[39] Loukas Dimitriou and Paraskevas Nikolaou. “Dynamic partitioning of urban road
networks based on their topological and operational characteristics”. 2017 5th
IEEE International Conference on Models and Technologies for Intelligent Trans-
portation Systems (MT-ITS). IEEE. 2017, pp. 457–462 (cit. on p. 18).

[40] Zvi Drezner, Carlton Scott, and Jing-Sheng Song. “The central warehouse location
problem revisited”. In: IMA Journal of Management Mathematics 14.4 (2003),
pp. 321–336 (cit. on p. 60).

[41] Christina Durón. “Heatmap centrality: a new measure to identify super-spreader
nodes in scale-free networks”. In: Plos one 15.7 (2020), e0235690 (cit. on p. 57).

66

[42] Murat Erisoglu, Nazif Calis, and Sadullah Sakallioglu. “A new algorithm for initial
cluster centers in k-means algorithm”. In: Pattern Recognition Letters 32.14 (2011),
pp. 1701–1705 (cit. on p. 58).

[43] Aleta C Fabregas, Bobby D Gerardo, and Bartolome T Tanguilig III. “Enhanced
initial centroids for k-means algorithm”. In: International Journal of Information
Technology and Computer Science 1 (2017), pp. 26–33 (cit. on p. 58).

[44] Linton C Freeman et al. “Centrality in social networks: Conceptual clarification”.
In: Social network: critical concepts in sociology. Londres: Routledge 1 (2002),
pp. 238–263 (cit. on p. 16).

[45] Xuehong Gao. “A location-driven approach for warehouse location problem”. In:
Journal of the Operational Research Society 72.12 (2021), pp. 2735–2754 (cit. on
p. 60).

[46] Mustafa Girgin. “Use of games in education: GeoGuessr in geography course”.
In: International Technology and Education Journal 1.1 (2017), pp. 1–6 (cit. on
p. 11).

[47] Alexey Golubev et al. “Geospatial data generation and preprocessing tools for
urban computing system development”. In: Procedia Computer Science 101 (2016),
pp. 217–226 (cit. on p. 18).

[48] Peyman Hashemi and Rahim Ali Abbaspour. “Assessment of logical consistency
in OpenStreetMap based on the spatial similarity concept”. In: OpenStreetMap
in GIScience: experiences, research, and applications (2015), pp. 19–36 (cit. on
p. 60).

[49] Christian Hedegaard Pliess Larsen. “"Exploring Hedging Strategies for Multiple
Players in GeoGuessr"” (2022) (cit. on pp. 13, 14, 23, 29, 31, 32, 53).

[50] Marco Helbich et al. “Comparative spatial analysis of positional accuracy of Open-
StreetMap and proprietary geodata”. In: Proceedings of GI_Forum 4 (2012), p. 24
(cit. on p. 60).

[51] Dongyang Jiang, Wei Zheng, and Xiaoqing Lin. “Research on selection of initial
center points based on improved K-means algorithm”. Proceedings of 2012 2nd
International Conference on Computer Science and Network Technology. 2012,
pp. 1146–1149 (cit. on p. 22).

[52] Leon Kaufman, Marc Vanden Eede, and Pierre Hansen. “A plant and warehouse
location problem”. In: Journal of the Operational Research Society 28.3 (1977),
pp. 547–554 (cit. on p. 60).

[53] Nina Kudláčková and Jan Chocholáč. “Warehouse location problem in context
of delivery time shortening”. MATEC Web of Conferences. Vol. 134 (2017): 18th
International Scientific Conference-LOGI 2017. EDP Sciences. 2017 (cit. on p. 60).

[54] Ina Ludwig, Angi Voss, and Maike Krause-Traudes. “A Comparison of the Street
Networks of Navteq and OSM in Germany”. In: Advancing geoinformation science
for a changing world (2011), pp. 65–84 (cit. on p. 60).

67

[55] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. “The planar k-
means problem is NP-hard”. In: Theoretical Computer Science 442 (2012), pp. 13–
21 (cit. on p. 57).

[56] Natarajan Meghanathan. “Use of Centrality Metrics to Determine Connected
Dominating Sets for Real-World Network Graphs”. 2015 12th International Con-
ference on Information Technology - New Generations. 2015, pp. 243–248 (cit. on
p. 16).

[57] Natarajan Meghanathan and Raven Lawrence. “Centrality analysis of the United
States network graph”. 3rd International Conference on Electrical, Electron-
ics, Engineering Trends, Communication, Optimization and Sciences (EEECOS
2016). 2016, pp. 1–6 (cit. on p. 16).

[58] Sneha Mehta, Chris North, and Kurt Luther. “An exploratory study of human
performance in image geolocation tasks”. HCOMP 2016 GroupSight Workshop on
Human Computation for Image and Video Analysis. Vol. 308. 2016 (cit. on pp. 13,
55).

[59] Tim Menzner, Florian Mittag, and Jochen L Leidner. “Which Country Is This?
Automatic Country Ranking of Street View Photos”. Advances in Information Re-
trieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin,
Ireland, April 2–6, 2023, Proceedings, Part III. Springer. 2023, pp. 275–280 (cit.
on pp. 12, 13, 55, 56, 62).

[60] Richard Tran Mills et al. “Parallel k-means clustering of geospatial data sets using
manycore CPU architectures”. 2018 IEEE international conference on data mining
workshops (ICDMW). IEEE. 2018, pp. 787–794 (cit. on p. 17).

[61] Peter Mooney, Padraig Corcoran, and Adam C Winstanley. “Towards quality
metrics for OpenStreetMap”. Proceedings of the 18th SIGSPATIAL international
conference on advances in geographic information systems. 2010, pp. 514–517 (cit.
on p. 60).

[62] Shi Na, Liu Xumin, and Guan Yong. “Research on k-means Clustering Algo-
rithm: An Improved k-means Clustering Algorithm”. 2010 Third International
Symposium on Intelligent Information Technology and Security Informatics. 2010,
pp. 63–67 (cit. on p. 22).

[63] Fereshteh-Azadi Parand, Hossein Rahimi, and Mohsen Gorzin. “Combining fuzzy
logic and eigenvector centrality measure in social network analysis”. In: Physica
A: Statistical Mechanics and its Applications 459 (2016), pp. 24–31 (cit. on p. 16).

[64] Wojciech Pokojski et al. “Educational computer games in geography”. In: Edukacja
biologiczna i środowiskowa 1 (2017), pp. 50–56 (cit. on p. 11).

[65] C Carl Robusto. “The cosine-haversine formula”. In: The American Mathematical
Monthly 64.1 (1957), pp. 38–40 (cit. on p. 25).

[66] Fátima Ferrão dos Santos. “Text Data Mining in a Geospatial Metadata Catalog”
(2015) (cit. on p. 17).

68

[67] Robert Stanforth, Evgueni Kolossov, and Boris Mirkin. “Hybrid k-means: Com-
bining regression-wise and centroid-based criteria for QSAR”. In: Selected Contri-
butions in Data Analysis and Classification (2007), pp. 225–233 (cit. on p. 18).

[68] Sudharshan Suresh, Nathaniel Chodosh, and Montiel Abello. “DeepGeo: Photo lo-
calization with deep neural network”. In: arXiv preprint arXiv:1810.03077 (2018)
(cit. on pp. 11, 12, 55, 56, 62).

[69] Yujing Wang et al. “Analysing the spatial configuration of urban bus networks
based on the geospatial network analysis method”. In: Cities 96 (2020), p. 102406
(cit. on pp. 15, 16).

[70] Tobias Weyand, Ilya Kostrikov, and James Philbin. “PlaNet-photo geolocation
with convolutional neural networks”. Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part VIII 14. Springer. 2016, pp. 37–55 (cit. on pp. 12, 55, 56, 62).

[71] Edy Winarno, Wiwien Hadikurniawati, and Rendy Nusa Rosso. “Location based
service for presence system using haversine method”. 2017 international conference
on innovative and creative information technology (ICITech). IEEE. 2017, pp. 1–4
(cit. on p. 58).

[72] Jyoti Yadav and Monika Sharma. “A Review of K-mean Algorithm”. In: Int. J.
Eng. Trends Technol 4.7 (2013), pp. 2972–2976 (cit. on p. 57).

[73] Madhu Yedla, Srinivasa Rao Pathakota, and TM Srinivasa. “Enhancing K-means
clustering algorithm with improved initial center”. In: International Journal of
computer science and information technologies 1.2 (2010), pp. 121–125 (cit. on
p. 58).

[74] Qilong Yuan, Haibo Shi, and Xiaofeng Zhou. “An optimized initialization cen-
ter K-means clustering algorithm based on density”. 2015 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER). 2015, pp. 790–794 (cit. on p. 22).

[75] Junlong Zhang and Yu Luo. “Degree centrality, betweenness centrality, and close-
ness centrality in social network”. 2017 2nd international conference on modelling,
simulation and applied mathematics (MSAM2017). Atlantis press. 2017, pp. 300–
303 (cit. on p. 16).

[76] Lanlan Zhang et al. “Improvement of K-means algorithm based on density”. 2019
IEEE 8th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC). 2019, pp. 1070–1073 (cit. on p. 22).

69

Appendices

A Map of Bornholm
Source: [7]

70

B Map of Malta
Source: [9]

71

C Map of Grenada (main island)
Source: [8]

72

D Map of Bornholm: Driveable Network

73

E Map of Malta: Driveable Network

74

F Map of Grenada (main island): Driveable Net-
work

75

	Introduction
	GeoGuessr
	Motivation
	Research Questions
	Contributions

	Background
	Related Work
	Utilization in Education
	Machine Learning Techniques
	Human Capabilities
	Voronoi Game
	Static Analysis

	OSM and Geospatial Data
	Centrality
	Measures of centrality
	Clustering of Centralities
	K-Means

	Methods and Implementation
	Arena and Target
	Arenas: Bornholm and Malta
	Placement of the Target

	Random Guess in Network
	Motivation
	Implementation

	Random Guess in Convex Hull
	Motivation
	Implementation

	Divide and Conquer
	Motivation
	Implementation

	Closeness Centrality
	Motivation
	Implementation

	K-Means Clustering
	Motivation
	Implementation

	Results
	Random Guess in Network
	Results
	Summary

	Random Guess in Convex Hull
	Results
	Summary

	Divide and Conquer
	Results
	Summary

	Closeness Centrality
	Results
	Summary

	K-Means Clustering
	Results
	Summary

	Collected results
	Results
	Summary

	Discussion
	Comparison of Results
	Synergy with Other Research
	Limitations
	Computational Limitations
	K-means Limitations
	Validity of OSM Data

	Applicability in Other Domains
	Future Research

	Conclusion
	Bibliography
	Appendices
	Map of Bornholm
	Map of Malta
	Map of Grenada (main island)
	Map of Bornholm: Driveable Network
	Map of Malta: Driveable Network
	Map of Grenada (main island): Driveable Network

