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for potential customers of a shared taxi service. Further, let
Ti = ðoi; di; toi; tdi Þ; i= 1 . . . k be k trips where oi denotes the origin
of the trip, di the destination, and toi; t

d
i the starting and ending

times, respectively. We say that multiple trips Ti are shareable if
there exists a route connecting all of the oi and di in any order
where each oi precedes the corresponding di, except for config-
urations where single trips are concatenated and not overlapped
like o1 � d1 � o2 � d2, such that each customer is picked up and
dropped off at the respective origin and destination locations
with delay at most Δ, with the delay computed as the time dif-
ference to the respective single, individual trip. Imposing
a bound of k on shareability implies that the k trips can be
combined using a taxi of corresponding capacity (Fig. 1G). De-
ciding whether two or more trips can be shared necessitates
knowledge of the travel time between arbitrary intersections in
Manhattan, which we estimated using an ad hoc heuristic (SI
Appendix, Fig. S2 and Table S1).

For the case k = 2, the shareability network associated with
a set T of trips is obtained by assigning a node T for each trip in
T , and by placing a link between two nodes Ti and Tj if the two
trips can be shared for the given value of Δ (Fig. 1 A and B). The
value of Δ has a profound impact on topological properties of
the resulting shareability network. Increasing Δ capitalizes on
well-known effects of time-aggregated networks such as densi-
fication (19, 20), capturing the intuitive notion that the more
patient the customers, the more opportunities for trip sharing
arise (Fig. 2 A and B). For values of k > 2, the shareability
network has a hypergraph structure in which up to k nodes can
be connected by a link simultaneously. Because of computa-
tional reasons, the shareability parameter k has a substantial
impact on the feasibility of solving the problem. A solution is
tractable for k = 2, heuristically feasible for k = 3, whereas it
becomes computationally intractable for k ≥ 4 (SI Appendix). This
constraint implies that taxi-sharing services, and social-sharing
applications in general, will likely be able to combine only a limited
number of trips. However, as we show below, even the minimum
possible number of trip combinations (k = 2) can provide immense
benefits to a dense enough community like the city of New York.

With the shareability network, classical algorithms for solving
maximum matching on graphs (21, 22) can be used to determine
the best trip-sharing strategy according to two optimization criteria:
(i) maximizing the number of shared trips, or (ii) minimizing the
cumulative time needed to accommodate all trips. To find the best
solution according to (i) or (ii), it is sufficient to compute a maxi-
mum matching or a weighted maximum matching on the shareability

network, respectively (Fig. 1 C and E, Materials and Methods). Be-
cause a shared trip can be served by a single taxi instead of two, the
number of shared trips can be used as a proxy for the reduction in
number of circulating taxis. For instance, an 80% rate of shared trips
translates into a 40% reduction of the taxi fleet. Other important
objectives such as total system cost and emissions are reasonably
approximated by criterion (ii).

Results
Using a maximum value of Δ = 10 min and all trips performed in
New York City in the year 2011, the resulting shareability net-
work has more than 150 million nodes and over 100 billion links.
We first consider trip-sharing opportunities under a model in
which the entire shareability network is known beforehand, and
maximum matchings are computed on the entire network. This
omniscient Oracle approach models an artificial scenario in
which trip-sharing decisions can be taken considering not only
the current taxi requests, but also all future ones, serving as
a theoretical upper bound for sharing opportunities. In practice,
the Oracle model is useful to assess the benefits of social-sharing
systems where bookings are placed well ahead of time (Fig. 3A).
Because of this foreknowledge, even with the low and reasonable
value of Δ = 2 min, the average percentage of shareable trips is
close to 100% (Fig. 3B).

In practical systems however, the Oracle approach is of limited
use, as only trip requests issued in a relatively short time window
are known at decision time, corresponding to a small time-slice
of the shareability network. In the following, we therefore focus
on trip-sharing opportunities in a realistic model in which the
trip-sharing decision for a trip T1 considers only trips that start
within a short interval around its starting time to1. More formally,
we retain in the shareability network only links connecting trips
Ti and Tj such that

�
�toi − toj

�
�≤ � , where � is a time window pa-

rameter. This Online model is representative of a scenario in
which a customer, using an “e-hailing” application, issues a taxi
request reporting pickup and drop-off locations, and after the
small time window � receives feedback from the taxi manage-
ment system on whether a shared ride is available. This param-
eter is fundamental in the Online model: the larger � , the more
trip-sharing opportunities can be exploited, for the same reasons
of network time aggregation as with Δ (SI Appendix, Fig. S3).
However, � should be kept reasonably small to be acceptable by
a potential customer, and to allow real-time computation of the
shared trip matching (SI Appendix). Therefore, in what follows,
we set � = 1 min.

As expected, reducing the time horizon � from practically
infinite in the Oracle model to 1 min in the Online model con-
siderably reduces trip-sharing opportunities for low values of Δ.
For instance, when Δ = 1 min, the Oracle model allows sharing of
94.5% of the trips, but the Online model only less than 30%.
However, the situation is much less penalizing for the Online model
when the delay parameter is increased within reasonable range.
When Δ = 5 min, the Online model can exploit virtually all avail-
able trip-sharing opportunities (Fig. 3B). Concerning saved travel
time, results are similarly promising (Fig. 3D). When Δ = 5 min, we
can save 32% of total travel time with the Online model, compared
with 40% savings in the optimal Oracle model. Note that our
method only concerns the sharing of nonvacant trips, but these
make up the majority of taxi traffic (18, 23). In fact, the fraction of
time during which taxis are serving customers corresponds to the
high value of about 75% of the on-service time of a taxi (SI Ap-
pendix, Fig. S1). Accounting for the effect of empty trips thus would
approximately reduce the total travel time savings from 40% and
32% to the still substantial values of 30% and 24% in the Oracle
and Online model, respectively.

Is it possible to even further improve efficiency by increasing
the number k of shareable trips? When k = 3, the shareability
network becomes a shareability hypernetwork, for which

A B

Fig. 2. Shareability networks densify with longer time aggregation,
increasing sharing opportunities. This exemplary subset of the share-
ability network corresponds to 100 consecutive trips for values of ( A) Δ =
30 s and (B) Δ = 60 s. Open links point to trips outside the considered set
of trips. Isolated nodes are represented as self-loops. Node positions are
not preserved across the networks. A similar, although visually not in-
sightful, densification effect is observed in shareability networks ob-
tained when k = 3.
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a function of the total number of trips (Fig. 3C). The average
number of daily trips in New York is highly concentrated around
400,000. Hence, we have generated additional low-density sit-
uations by subsampling the dataset, randomly removing increasing
fractions of vehicles from the system (Materials and Methods). The
resulting shareability values are excellently fit by saturation curves
of the form f ðxÞ= Kxn=ð1+ KxnÞ. These curves are well-known to
describe binding processes in biochemical systems, providing an
interesting link to general pairing problems (SI Appendix). At
around 100,000 trips, or 25% of the daily average, we already
reach saturation and near-maximum shareability. This fast satu-
ration suggests that taxi-sharing systems could be effective even in
cities with taxi fleet densities much lower than New York.

Future work should aim to assess in more detail the psycho-
logical limitations of taxi sharing, to understand the conditions
and appropriate incentive systems under which individuals are
willing to be seated in the same vehicle. This includes the design
of suitable faring systems aimed at fairly distributing the eco-
nomic benefits of sharing between drivers and customers, such as
the one proposed in ref. 17. Moreover, the sharing analysis should
be extended to other cities to better understand the generaliz-
ability of the results, and if possible, to measure and incorporate
currently unknown data such as the actual search or waiting times
of passengers who are trying to find an empty taxi, or the number
of passengers that are being transported per vehicle. Finally, the
framework of shareability networks could be used to study more
generally other social sharing scenarios (26) such as ride sharing
of cars, bikes, etc. or the communal use of equipment which is
characterized by considerable unit cost and infrequent use,
stimulating new forms of sharing and models of ownership (10).

Materials and Methods
Trip Data. The dataset contains origin-destination data of all 172 million trips
with passengers of all 13,586 taxicabs in New York during the calendar year of
2011. There are 39,437 unique driver IDs in the dataset, which corresponds to
2.9 drivers per taxi on average. The dataset contains a number of fields from
which we use the following: medallion ID, origin time, destination time,
origin longitude, origin latitude, destination longitude, and destination
latitude. Times are accurate to the second; positional information has been
collected via GPS technology by the data provider. Out of our control are
possible biases due to urban canyons which might have slightly distorted the
GPS locations during the collection process (27). All IDs are given in anony-
mized form; origin and destination values refer to the origins and destina-
tions of trips, respectively.

Map Data and Map Matching. To create the street network of Manhattan we
used data from www.openstreetmap.org . We filtered the streets of Manhattan,

selecting only the following road classes: primary, secondary, tertiary, residen-
tial, unclassified, road, and living street . Several other classes were deliberately
left out, such as footpaths, trunks, links, or service roads, as they are unlikely to
contain delivery or pickup locations. Next we extracted the street intersections
to build a network in which nodes are intersections and directed links are roads
connecting those intersections (we use directed links because a nonnegligible
fraction of streets in Manhattan are one-w ay). The extracted network of street
intersections was then manually cleaned for obvious inconsistencies or redun-
dancies (such as duplicate intersection points at the same geographic positions),
in the end containing 4,091 nodes and 9,452 directed links. This network was
used to map match the GPS locations from the trip dataset. We only matched
locations for which a closest node in the street intersection network exists with
a distance less than 100 m. Finally, from the remaining 150 million trips we
discarded about 2 million trips that had identical starting and end points, and
trips that lasted less than 1 min.

Maximum Matching of Shareability Networks. Given a graph G = (V, E), a
matching M in G is a set of pairwise nonadjacent edges. A maximum
matching is a matching that contains the largest possible number of
edges. A weighted maximum matching is a matching in which the sum of
edge weights is maximal. In the cont ext of shareability networks, max-
imum matching solves optimizing t he number of shared trips, whereas
weighted maximum matching minimizes the cumulative time needed to
accommodate all trips if the weights on the shareability network are
taken as the travel time that is saved by sharing. Given that shareability
networks are sparse, for the case k = 2 maximum matching and weighted
maximum matching can be solved in polynomial times Oðn

���
n

p
Þand O(n2

log n) (22), respectively, where n is the number of nodes in the network.
For higher dimensions, k > 2, fast approximations to the optimal sol-
utions exist (24), which however become computationally unfeasible for
k > 3. For details see SI Appendix .

Subsampling of Vehicles. To assess to which extent our results could be
generalized to cities with lower taxi densities than New York, or to situations
where willingness to share is low, we have generated additional low-density
situations by subsampling our dataset, randomly removing various fractions
of vehicles from the system in the following way: For each day in the dataset,
we randomly selected a percentage c of the taxis in the trace, and deleted
the corresponding trips from the dataset. We varied c from 95% down to
1%, generating a number of trips per day as low as 1,962. Note that by
subsampling the vehicles we filter both taxis and the trips which represent
the demand.
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