
The N-Minute City

Evaluating multi-modal accessibility in Denmark and the United States

STADS: KISPECI1SE

Jan Leonard Schelhaas (jasch@itu.dk) & Peter Gregory Mehler (pmeh@itu.dk)



The N-Minute City
Evaluating multi-modal accessibility in Denmark and the United States

Jan Leonard Schelhaas1 and Peter Gregory Mehler1

1IT University of Copenhagen

Accurately simulating human mobility can open the door to higher
quality and more robust research in city design, urban sociology and
more. Towards this goal, many recent papers have included some
combination of features to estimate real mobility patterns which con-
sider walking, cycling, public transit, and high resolution routing in
their analyses of human mobility. There is an emergent need for a
comprehensive method that encompasses all of these features. In this
thesis, we address the need for a comprehensive method by present-
ing a new, efficient open-source tool written in Rust and Python with
a parallelized routing engine for fast mobility simulations. We show
the potential of our method to highlight the individual contributions
of walking, cycling, and public transit by evaluating the accessibility
of various locations in Denmark and the US on a new metric, which
we call the n-minute statistic. The n-minute statistic describes the
median number of minutes needed to access the farthest category
of essential point of interest from any origin, and can be used to
measure any city’s progress towards being an n-minute city. Our
results show that in Denmark, bicycle infrastructure contributes to a
12.3% increase in accessibility and transit infrastructure contributes
to a 21.5% increase on average. The increases in accessibility from
bicycle infrastructure are larger for areas of high population density,
while areas of low population density benefit more from the public
transit network. Additionally, we estimate potentially large accessibil-
ity improvements from expanded bicycle infrastructure and increased
transit frequencies across all population densities. The results of our
case studies indicate that cycling and transit contribute to accessi-
bility; and therefore suggest that including all modes of sustainable
transport is important for comprehensively capturing accessibility.
Our tool combines the advantages of previous approaches by includ-
ing all modes of sustainable mobility and, when combined with our
n-minute metric, provides a simple-to-understand and scalable means
of evaluating urban accessibility.

1. Introduction

Despite widespread interest in modeling human mobility, there
does not yet exist a comprehensive framework which incorpo-
rates essential multi-modal aspects of human mobility in high
resolution at scale (1). In this study, we provide a new tool ∗

which streamlines the accessibility analysis pipeline from build-
ing a multi-modal network to estimating accessibility with our
simple metric. Our method for multi-layer network creation,
which accounts for walking, public transit, and cycling, can be
applied to a majority of cities worldwide, has high resolution
for local infrastructure, and includes time sensitive transit
routing. We show the potential and validity of our method for
more accurate simulations of human mobility and provide an
accessible, open-source software package for others to conduct
further research.

We answer the following research questions using our multi-
modal approach to human mobility:

1. To what extent does the presence of bicycle and tran-
sit infrastructure influence the accessibility of essential
resources for people living in cities and rural areas in
Denmark?

∗https://github.com/hextransit/n-minute-city/

2. To what extent does the influence of bicycle and transit
infrastructure on accessibility vary between people living
in Denmark and the US?

3. Can we validate our methodology for simulating travel
time without the use of proprietary data and closed-source
tools?

We give a short overview of our definitions of accessibility
and a high level description of our methodology below. To
proxy accessibility, we create a metric modeled after the 15-
Minute-City idea in urban design literature. The "15-Minute-
City" concept is an idea coined by Carlos Moreno, in which
all people living in cities should be able to reach all amenities
necessary to live a healthy life within a 15-minute travel time
(2). In the original formulation, the number 15 was chosen
arbitrarily (2). This project takes an analytical approach and
replaces the 15 minutes with a variable, n. Our metric, called
the n-minute statistic, answers the following question: Given
any city, in how many minutes can a resident reach essential
services from their residence? More specifically, the n-minute
statistic describes the median number of minutes needed to
access the farthest essential point of interest (POI) from any
origin. See section 4.2 for more details on the n-minute statis-
tic calculation. For determining travel time, we first identify
origins and destinations to simulate trips between. Origins
are represented by residential buildings, and destinations are
represented by buildings with user-defined labels like "super-
market" and "pharmacy." We simplify Moreno’s definition of
relevant destinations and choose the categories supermarkets,
schools, sport facilities, parks, and pharmacies as POIs. See
section 4 for details on the POI filters.

We then perform routing between origins and destinations
on our multi-modal network which includes the possibility to
walk, cycle and use transit. See section 4.1.1 for a complete
overview of how we construct the network. Travel times
resulting from the routing are recorded from every origin to
each origin’s closest POI for each category. These travel times
are then used to compute the n-minute statistic.

Our data processing pipeline is set up to construct sustain-
able transit infrastructure and measure accessibility for any
city that has the necessary data available. For this thesis, we
focus on cities in Denmark and the United States and quantify
the effect individual modes of transport contribute to increases
in accessibility.

We choose not to include the road network and cars in our
analysis because the original formulation of the 15-Minute-City
specifically mentions the exclusion of cars in the ideal model
(2). Moreno et al. justify the exclusion of cars because of the
negative effects of non-active mobility and pollution on human
health and the environment.
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2. Background

There are many urban design paradigms which aim to capture
the benefits of human-centered city design (2–5). One in
particular has become increasingly popular in the public sphere
– the “15-Minute-City”.

2.1. The 15 Minute City. The "15-Minute-City" is an urban
design concept coined by Carlos Moreno, which lays out a
roadmap for building cities designed for people (2). Moreno
suggests building cities which center around distributed local
communities, rather than central hubs, as a way to expand
human relationships and culture in cities, while diminishing
carbon footprints and enhancing public health (6, 7). Going
beyond academic discussion, many decision-makers have cho-
sen the 15-Minute-City paradigm as their preferred strategy
to attain goals of improving life quality and sustainability (8).
A study of 15-minute policies in 2022 by governments of major
cities in North America and Australia found that 25 cities had
planned or begun implementing policies towards the goal of
the 15-Minute-City (8).

Interestingly, the definition of the 15-Minute-City varies
greatly by city. Of the 25 cities, there were 11 unique names
referencing the 15-Minute-City concept from "walkable neigh-
borhoods" to the "20-minute city" in policy papers and speeches
by leaders. This burst of popularity, as well as the variance in
naming and measurement, is reflected in academic literature;
Nearly every major study has their own method of measure-
ment, often tailored to the design of a specific city (7, 9–13).
In the following paragraphs, we will give a short overview
of the major papers which have measured a version of the
15-minute statistic, and a short analysis of the pros and cons
of each.

A variation of the 15-Minute-City, the 15-minute walkable
neighborhood, has been outlined by Weng et al. (7) in which
everything relevant to living a fulfilling life should be reach-
able through walking alone. The authors mention the health
benefits of such a model and, of particular note to this project,
the authors apply a Walk Score metric which computes the
distance to various categories of amenities, weight each cat-
egory, then add a gravity decay to penalize distance. Ferrer
et al. propose a score based on walkability in Barcelona (10).
Their 15-Minute-City score is based upon how many of 24 POI
categories are accessible within 15 minutes. Gaglione et al.
propose a binary approach by identifying areas of Naples, Italy
which can and cannot reach all categories of POI within 15
minutes of walking (11). They also provide very fine-grained
analysis where walking routes are scored by walk-ability using
data such as sidewalk width and expected road traffic. Knap
et al. use Open Street Map (OSM) to generate the bicycle
network and use a two-step floating catchment area (2SFCA)
metric to incorporate both competition for resources and grav-
ity decay (12). Closest to our methodology, Birkenfeld et al.
use cycling, walking, and transit in Montreal to identify resi-
dential origins which reach essential POIs using active mobility
within 15 and 30 minute thresholds. They claim that the 15-
Minute-City is not reachable for some North American cities,
given that they show changes in the built environment predict
limited increase in accessibility (13). Although metrics like
2SFCA likely more accurately capture accessibility, we prefer
the n-minute metric for our analysis for its simplicity and
interpretability. Keeping the measurement units in minutes,
for example, was a deliberate choice for our metric design.

The concept of the 15-Minute-City has gotten more atten-
tion recently, after it became the subject of a multitude of
conspiracy theories, mostly propagated by conservative influ-

encers and politicians in the United Kingdom and the US
(14, 15). There is also criticism rooted in legitimate concern;
15-minute neighborhoods have been criticized as they could
lead to an increase in socio-spatial inequalities (7).

In addition to the many methods for defining a 15-Minute-
City metric, there also exists a multitude of methods for
designing methods to model human mobility. We describe
previous approaches to multi-modal routing in the following
subsection.

2.2. Multi Modal Routing. In order to more accurately model
human mobility, many have proposed routing on a multi-layer
network of transport modes (1, 16–21). Gil et al. (19) proposed
building multi-modal networks for human mobility using OSM.
The authors provide an overview of OSM data quality and
confirm the data source’s suitability for the task of multi-
modal routing of human mobility. Aleta et al. (16) propose
a method to model the various mobility layers. Of particular
inspiration for this thesis, the authors describe a method to
model transit layers, in which each transit route has its own
layer in the network. Each transit route being on its own
layer then allows for more accurate modeling of transfer and
wait times. We implement this solution to our own network
in section 4.1.1. Huang et al. (21) provide an overview of the
different methods to incorporate time into the construction
of the transit layers, and propose a "fuzzy" method to model
non-static networks like those of ride-sharing services. All the
previous methods generate the network directly from data of
real world infrastructure, however, mobility networks can also
be constructed directly from mobility traces.

We gave considerable thought into choosing between net-
work generation from existing infrastructure, or network gen-
eration from measured mobile phone GPS signals. Zhang et
al. 2023 (9) generate a mobility network of Nanjing, China
from mobile phone GPS data. Their network architecture is
defined by human mobility patterns, which has many bene-
fits in accurately measuring the travel time taken by actual
residents of an area. GPS data provides a data-driven ap-
proach to generating the network; however, it comes with
biases and drawbacks which make it more difficult to adopt
widely. Scalability and feasibility may become an issue when
comparing cities globally, as GPS data is not widely available
for public use. Additionally, biases exist in terms of who is
using their phones, who travels at which speeds and more.
Given unlimited data, this approach may be preferable to a
network generated from transit infrastructure, however with
current data availability, we argue that networks generated
from transit infrastructure are preferred.

How does our method fit into and expand on previous
research? Answering the call for a unified multi-modal trans-
portation modeling method (1) we provide a comprehensive,
accessible, and fast open-source tool to build the necessary
multi-modal mobility network when conducting research in
human mobility. Previous approaches have either not included
bicycle infrastructure (16, 18, 20, 21), not used a precise mea-
surement of street infrastructure (16, 17, 20), or not considered
real time dependency in their transit routing (19, 20). We
provide a method for creating a multi-layer human mobility
network which encompasses each of these features, as well
as provide an efficient routing engine, and present it as an
open-source package for further use. Multi-modal transport
provides robustness, reach (for destinations which are far),
and speed to residents and visitors of the city. In order to
capture the nuance of multi-modality, we implement a multi-
layer network consisting of walk, bicycle, and public transport
networks.

3 |



Data Type Data Source Main Tools

Routing Network Walk and Bicycle Nodes and Edges Open Street Map Custom Implementation
Routing Network Transit Nodes, Edges, and Timetables Multiple Sources; Local Transport Authorities Custom Implementation
Point of Interest Destinations Open Street Map Pyrosm, BBBike
Residential Origins EU Global Human Settlement Layer Rasterio, OSMnx
Population Density for Various Cities Multiple Sources; Local Statistics Organizations Pandas

Table 1. Data sources and main tools used for different data types.

3. Data

In this section we present the selected data sources, explain the
rationale behind their selection, and evaluate their advantages
and limitations.

3.1. Data Sources. We summarize our data types, sources, and
main tools used in Table 1.

During processing, all of our data is converted to a hexag-
onal ID, using the H3 geospatial indexing system developed
by Uber (22). It covers the globe in multiple, hierarchical
sets of hexagons. A hexagonal index is an unsigned, 64-bit
integer (u64). There are 16 resolutions available, covering the
globe in 122 hexagons at resolution 0 and 569,707,381,193,162
hexagons at resolution 15. Each resolution also includes 12
pentagons, which are placed over the ocean and are not rele-
vant for us. The hierarchical nature of the hexagons allows for
easy mapping to higher and lower resolutions using fast bit
shift operations. An example of the basic use case of H3 is as
follows: Two points which are within the same hexagon will
have the same ID, and will then be snapped to the center of
the hexagon in further analysis.

We use the H3 system to convert all our data into one
common, easily mergeable format that may account for some
inaccuracies in the original data. When we process at resolu-
tion 12, where each hexagon has an edge length 10.8 meters
and covers an area of about 300 m2, we mitigate bias of points
being snapped to the center of the hexagon while still gain-
ing computational performance. There are 1,660,954,464,122
hexagons spanning the globe at this resolution. Another ad-
vantage is that nearest neighbor calculations are no longer
necessary to map data points to each other, as we can instead
merge directly on the H3 index. Additionally, we can also use
the built-in k-ring functionality, which returns the indices of all
neighboring hexagons up to a distance k, to find neighboring
hexagons and search in the direct vicinity of a hexagon. This
speeds up processing and simplifies the in- and outputs of our
functions to u64 values or lists of those. The H3 functionality
is especially useful in two cases: (1) The connection of two
layers of the multi-modal network occurs where nodes of two
layers share the same H3 index. (2) Any additional metadata
added to the network, like origins and destinations for routing,
are easily added by simply identifying the metadata’s shared
H3 indices with the network.

We rely on data from three sources to build the network
and identify origins and destinations:

• Satellite raster data from the European Union’s global
human settlement layer (GHSL) to identify places of
residency.

• Public transport timetable data in GTFS (general transit
feed specification) format, sourced directly from local
transit agencies

• Open Street Map (OSM) data in binary protocol buffer
format (osm.pbf) downloaded from extract.bbbike.org for
the extraction of points of interest and the network gen-
eration. We initially wanted to use pyrosm to automate
destination extraction but encountered high RAM usage
and high computation time when filtering with a bounding
box (23).

To identify origins for our multi-modal routing, we use
the EU Global Human Settlement Layer (GHSL) data for
its scalability and comprehensiveness. Specifically, we use
the GHS-BUILT-C-R2022A (24), a dataset which has human
settlement boundaries as raster images covering most of the
world at a resolution of 10 meters per pixel. The dataset has
been split into 1000 by 1000 kilometer area sections. Each
pixel has 25 possible labels with various characteristics, in-
cluding whether the given pixel is a residential or commercial
building. Given the constraint that our solution needs to be
globally scalable to identify origins in any city, OSM would
have required an exhaustive list of building type tags across
many cities to accurately identify residential versus commer-
cial areas. In this way, we are able to avoid manually building
OSM tag filters and can better automate our origins pipeline.
We use municipal boundaries extracted from OSM to crop the
GHSL files, so that processing time is reduced when sampling
origins.

A peer reviewed validation of the automatic classification of
each area is currently unreleased, and as a result we manually
validated the data on Copenhagen based upon a visual inspec-
tion of data quality. We verified that major commercial areas
and residential areas in Copenhagen were correctly classified.

In line with previous literature (25, 26), the walking and
cycling networks are created using Open Street Map (OSM).
Adding the appropriate filters to OSM such that the net-
work returned accurate structures was a lengthy and constant
process. There are many unique tags in OSM which denote
the type or intended use of a "way" or edge. This diversity
causes issues in the cycling network in particular, as we had
to build an extensive list of tags which should and should
not be included. We use our experience and knowledge of
Copenhagen to decide when to include and exclude certain
roads for cycling and walking, and Google Street View for
cities we are not familiar with. The walking network contains
all ways that are not exclusive to cars or have restricted access.
This means that motorways and trunk roads are excluded
from this network. The bicycle network does not include all
cyclable paths, but only the ones that feature dedicated cy-
cling infrastructure, with a painted bicycle lane as a minimum.
Both networks exclude ways that are marked to have access
restrictions. We recognize that it is possible to cycle on roads
without dedicated cycling infrastructure, but decided on not
including, e.g., residential roads. Our network is comparable
to the medium-lower bound network outlined by Reggiani et
al. (27).
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Fig. 1. Processing Pipeline: GTFS and OSM data gets processed in Rust (red) and converted into a Graph, GHSL and OSM data is processed in Python (blue) to determine
origins and destinations for routing. The routing is called from Python, but the calculation is done in Rust. A central step in the pipeline is the mapping of all data to H3 indices.
Note that once the necessary data sources are available, a potential user needs only to input the name of their city, town or region to generate results.

4. Methods

In this section we provide an overview of our processing
pipeline for generating the graph, origins and destinations
as well as describe how routing is conducted.

4.1. Data processing. This section covers the entire, custom-
built data processing pipeline, as well as the data sources we
used. We implemented parts of the infrastructure in Rust for
performance reasons, while others remain in Python.

Data processing can be organized into two major compo-
nents: The network creation and the identification of origins
and destinations for the routing simulation. Find a summa-
rized overview of the processing pipeline in Figure 1. The
figure shows the two sides of our pipeline, one in Rust, colored
red and one in Python, colored blue. All data gets normalized
by mapping each point to an H3 index. This enables us to
merge data from different sources with ease.

In order to assess the best method for accomplishing multi-
modal routing, we reviewed available open source-tools in
our preceding project (28). There, we used graph-tool (29)
as the graph computation library to build our initial tool.
As we further developed, it became clear that graph-tool
has limitations which would prevent us from conducting our
planned analyses. The graph-tool network required a lot of
memory (around 60 GB for Denmark) and did not support
many-to-many point routing in a fast manner. This means
that we have a high number of origin-destination pairs that we
need to perform routing for. We wanted to be able to calculate
distances in parallel and therefore built a custom, simplified
graph computation library that could do exactly that. Using
the Rust programming language, we built a library with a
Python interface, that stores compact graphs (the graph for
Denmark uses around 10 GB of memory now) and allows for

parallel read access to that data, so routing can be performed
in parallel without copying any data. We go into more detail
on that in section 4.3. With our new, custom tool at hand,
we were now able to optimize for the exact workloads and
tasks we were giving it and could leverage the speed and safety
benefits that come from using pure Rust code.

4.1.1. Graph Setup. The multimodal graph is designed as a multi-
layer network with a layer for walking, cycling, and a separate
layer for each transit line. Transit routes are each on their
own layer as in (16) to better model the reality of transfers
between lines of public transit. All layers are connected to the
walking layer, at points where they share an H3 index. See an
illustration of our graph setup in Figure 2. All edges in the
graph are directed and are weighted with their traversal time in
minutes. Edges are connected from the centers of each hexagon.
Using hexagon binning for graph approximation overestimates
distance in the worst case by a factor of 2d√

3 + 4s√
3 . Where d is

the distance of the path and s is the length of a side of the
hexagon. The first term is explained in Figure 3. The second
term represents the added distance in the case where start
and end points are as close to each other as possible while still
being in their respective hexagons. The extra error is then
caused by the hex binning snapping the points to the hexagon
centers.

The weighting for the walk and bicycle layer is dependent
on the selected walking and cycling speed, while the transit
edges are weighted using the difference between arrival and
departure time according to the timetable data. The edges
that connect the different layers model a mode switch penalty
for the bicycle layer and the expected waiting time at transit
stations. The penalty for switching to the bicycle layer exists
to discourage the routing from switching between layers too
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Fig. 2. An example of how we set up the multilayer graph. Every layer uses H3
hexagons as nodes. On the walk and bicycle layer, adjacent nodes are connected by
an edge if they are also connected on the OSM network. The walk and bicycle layer
are connected wherever they map to the same H3 index, connections to the transit
layer are only at transit stops. There are connecting edges to each route, which model
the expected weight time for the next departure. Every transit route is considered to
be a separate layer. Adapted from (28).

Fig. 3. Illustration of the hexagon worst case distance over-estimation without con-
sidering start and end point placement within start and end hexagons. Note that the
distance from the center of the shown hexagons to a corner of the same hexagon is 1
unit. Therefore, the total length of the blue line is 3, while the total length of the red
line is 2

√
3

frequently. The expected wait time is either the best-case wait
time for that station and route, or, if specified, the expected
wait time at a given time of day. Wait time is defined as
t = freq

2 . We calculate this for each hour for every day of the
week. During routing, we can select either the hour of the
week, which is a number between 0 for Mondays at 00:00 and
167 for Sundays at 23:00, or just use the best case for that
station. The default weighting is based on a walk speed of
1.5 m/s and a bicycle speed of 4.5 m/s which is supported by
similar studies (10, 30, 31).

For some analyses, we modify the weights to simulate the
impact of infrastructure changes. For example, to model a
scenario where dedicated cycling infrastructure is present on
all walking paths, we use the walking network but modify the
edge weights to match cycling speed. We do this by changing
the cycling speed parameter in the graph creation options,
which are accessible from the Python interface. We can also
simulate an increase in departure frequency for transit routes
by changing the weights on the edges connecting to the transit
layers.

Note that we define the bicycle layer to only include bicycle
paths with dedicated bicycle infrastructure. We chose this to
reflect a nice-to-cycle rather than a possible-to-cycle graph,
given that the quality of bicycle infrastructure has been shown
to induce demand for cycling (32).

4.1.2. GHSL processing. After graph creation, we identify res-
idential areas as origins and relevant points of interest as
destinations to use in our routing simulation. See the Python
section of Figure 1 to place this methodology in the overall
processing pipeline. We identify residential areas as origins in
order to avoid distorting the n-minute calculation by simulat-
ing travel times for paths which are not traversed by residents
in reality. Choosing random nodes in the network as origins
could exaggerate the inaccessibility of non-residential areas.
For example, if we randomly choose a network node in an in-
dustrial area with a population of 0, the likely low accessibility
of this area will be included in the overall n-minute statistic.
Thus, we argue that the identification of residential areas is
essential for accurate measurements of the n-minute statistic.

Origins are extracted from GHSL data in 4 main steps.

1. Crop GHSL with bounding box from municipal bound-
aries

2. Reproject the cropped GHSL

3. Convert cropped reprojection to H3

4. Compute H3 set overlap with municipal boundaries

Each GHSL raster contains 10 billion pixels, and thus the
first step to space and time efficiently process them is to
crop the original grid to a bounding box just large enough to
encompass the municipal boundaries of the city in question.

We generate the boundaries of the city by querying the
function geocode_to_gdf() from the OSMnx Python package
with a list of city names. City names have to be as they are
listed in Open Street Map. For example, Copenhagen must
be "København Kommune" to access the correct boundaries.
All city name query, boundary pairs were plotted to ensure
that the correct area was extracted. Additionally, functionality
exists for multiple cities. For example, if one wanted to include
Frederiksberg, which exists entirely within the boundaries of
Copenhagen, both cities can be used as input in a list to return
combined overall outer boundaries.

Using the extrema coordinates in all cardinal directions,
we create our bounding box for cropping the GHSL raster.
Before cropping, we reproject the bounding box to the GHSL
Coordinate Reference System (CRS).

After cropping the GHSL raster, we then reproject the
cropped section to EP SG : 4326 to be able to use standard
latitude and longitude in further analysis. We then take all
latitude and longitude coordinates for each pixel of the raster
and convert them to their corresponding H3 index at a given
resolution, keeping only those with residential labels.

To obtain only the H3 indices within the municipality
boundary of interest, we create two sets of hexagons. (A) All
possible hexagons contained within the municipal boundaries,
which we convert from a Shapely (33) polygon after extracting
them from OSMnx, and (B) The hexagons representing the
residential origins. The final list of origins is the intersection
between the two sets, A ∩ B.

4.1.3. OSM processing. To generate our destinations, we extract
an Open Street Map bounding box as Protocol Buffer Format
(pbf) file from extract.bbbike.org, then query the resulting
region with a filter to retrieve the relevant origins.

Edge effects have the potential to bias results in regions
near borders by not taking into account interactions across
boundaries (34, 35). Because we have access to data beyond
the municipal border in question, accounting for edge effects
can be done by expanding our destination boundaries well
beyond our municipal boundaries for origins. As a result,
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the destinations bounding box was chosen to be 5 kilometers
beyond the extreme bounds of the residential coordinates for
origins in all cardinal directions. The wider bound avoids many
possible edge effects, as points of interest beyond the city limits
are still accessible to residents and better reflect the reality of
people living near municipal boundaries (34, 35). This means
that, e.g., a supermarket in a neighboring municipality is
considered in our routing. Within the bounding box we collect
all points of interest with corresponding shapes, latitudes, and
longitudes. To be able to do routing, destinations should be
points with specific tags as destinations. The next steps are
therefore to filter for relevant tags and convert all geometries
(polygons, lines, and multilines) to single points. These single
points are then mapped to respective H3 indices to be used as
destinations.

Destination types are selected based on a filter applied to
OSM data. We define our filter by simplifying the list of POIs
designed for the original 15-Minute-City concept by Moreno et
al. (2). Specifically, we do not include cultural, entertainment,
or work related destinations. Our resulting category set is
therefore pharmacy, park, supermarket, sport, and school.
Although we chose a specific filter for this study, we leave the
tag filter as an editable parameter in our software package,
allowing future studies to modify which POIs are relevant for
their purposes.

OSM data related to network structure is processed in the
Rust side of the pipeline, see section 4.3.

4.2. The n-minute Calculation. In this section, we describe
the method used for measuring the n-minute city. For a
more detailed discussion of the pros and cons of aggregate
statistics, see section 6. In Moreno’s recent paper defining
the 15-Minute-City, the ideal city is described as a place
where people "are able to access all of their basic essentials
at distances that would not take them more than 15 min by
foot or by bicycle" (2). We interpret the use of "more than"
to be taking a maximum. As a result, for a given residential
origin, we define the n-minute statistic as the maximum of
all shortest paths to each category of point of interest. See
an illustration for a single origin in Figure 4. For example,
if we take an apartment building to be an origin, we begin
with a category, like supermarkets, and record the travel time
to the nearest supermarket. We continue by computing the
minimum travel time from the apartment building to the
nearest pharmacy, park, etc. We then take the maximum of
these, which could be, for example, the travel time to the
nearest pharmacy. This is now the n-minute statistic for a
single origin in our graph. For an entire city, we then aggregate
all the n-minute statistics of each origin by taking the median
of all origins. A main design decision of our n-minute statistic
is that we determine n by looking at the point of interest that
is furthest away from the origin out of all the nearest points
from each category. This is a rather simple way of calculating
accessibility, and other approaches have been implemented
by others, such as weighting the different categories based on
their importance (26). We discuss the impact of this design
decision in section 5.2.2 and 6 and consider variations of the
n-minute city measurement an area of future work. A more
precise definition of our n-minute statistic follows below.

Let A be a k × l matrix where k is the number of origins,
l is the number of categories, and Ai,j is the length of the
shortest path from origin i to destination category j.

If max(Ai,1, Ai,2, . . . , Ai,l) is the maximum distance of the
ith origin of A, then maxorigin(A) is a column vector of length
k containing the maximum shortest path of each origin of A.

Fig. 4. Example routes from a single origin (blue) in Copenhagen to all nearest
points of interest. The travel time in minutes is shown on the destination dots. Each
path is a route on the hexagonal network from the origin to the nearest POI of each
category. Only the path to the pharmacy utilizes the bicycle network. The distance to
the nearest pharmacy is also what defines the origin’s n-minute value, 9.29 minutes,
as this is the essential POI that is furthest away.

Formally,

maxorigin(A) =


max(A1,1, A1,2, . . . , A1,l)
max(A2,1, A2,2, . . . , A2,l)

...
max(Ak,1, Ak,2, . . . , Ak,l)


A city’s n-minute value is defined as the median of all

maxorigin(A).
Figure 4 shows an example of the n-minute calculation

for a single origin on the walk and bicycle network. For this
point, the routing utilizes the bicycle layer for the path to
the pharmacy. Due to the bicycle penalty for beginning and
ending cycling trips, all other routes are short enough and
only use the walking layer. The bicycle penalty is a weight on
the interlayer edges between the walk and bike network, used
to discourage the routing from switching between layers too
frequently.

4.3. Parallelized graph computations in Rust. To facilitate fast
and memory efficient computations of the n-minute city, we
implement a generic graph computation library in Rust. Rust
is a low-level, strongly typed, memory and thread-safe pro-
gramming language that offers comparable performance to C
or C++ while avoiding many of the common errors that C and
C++ code can produce, due to its unique ownership model
for memory management. It also offers easy ways to integrate
with Python through PyO3 (36). Our goals are to enable fast
n-to-n point calculations and to reduce memory usage over
our previous graph-tool implementation. To achieve that, we
needed a graph data structure, that allows for multithreaded
read access, so that multiple routing simulations can be per-
formed at the same time. Additionally, all data should be
stored in a compact format to reduce memory usage.

The graph is backed by an adjacency list, which is imple-
mented as a HashMap with an optimized hash function for
sequential unsigned integer indices. Access to the adjacency
list is guarded by an Arc (atomic reference counter) and a
RwLock (read/write lock). The Arc enables concurrent access
to the data, while the RwLock controls the type of access. In
our implementation, write access is granted for edge creation,
while all other functions only require read access. Nodes are
stored in a vector and are referenced using their index. The
graph supports node and edge deletion, but will not shift
indices when doing so. This means that memory usage will
increase if a lot of node additions and deletions are performed
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over time, but for our use case this is not relevant. We are not
modifying the graph after creation. The graph is designed to
be generic and supports any data type for nodes that fulfills
a certain list of traits. In our case, a Node is of type H3Cell,
with additional metadata being supported but not used. An
H3Cell holds an H3 index and a layer. The memory footprint
of one H3Cell is 10 bytes, with 8 holding the H3 index and 2
being allocated for the layer. An edge references two nodes
by their index in the node list and holds additional, optional
information, such as the weight and capacity. We use a bidi-
rectional HashMap to allow for faster mappings between H3
values and node indices. We implemented both BFS and A*
(A-star) as pathfinding algorithms. In addition to the basic
implementation for both algorithms that returns a path, there
is also a parallel version that returns the distance for all valid
origin-distance pairs that are input. That version will use
all available threads to calculate distances and scales by the
number of origins provided. Our usage of A* is equivalent to
using Dijkstra’s algorithm, as we are using a constant heuristic
of h(x) = 0 when searching for multiple destinations.

The worst-case time complexity of the parallel A* algo-
rithm is O(n · |E|), with n being the number of origins. The
underlying graph is not copied for parallel operations, but
each routing still needs at worst O(|V |) space. This makes the
worst-case space complexity O(n · |V |).

In addition to the generic graph implementation, we added
functions for processing GTFS and OSM data to the Rust
crate as well. For those, we utilize third-party crates to ease
reading in the files. The processing of OSM and GTFS is
parallelized using rayon (37). The conversion into H3 indices
is handled by the h3o (38) library. To combine the GTFS
data with the OSM graph, we added a function to merge
multiple graphs based on H3 indices. The merging function
allows us to combine any number of OSM and GTFS files
without creating duplicate nodes. The graph creation process
for all of Denmark takes about 100 seconds on our test server.
See the hardware specifications of that server in appendix
B.To make sure that the graphs are consistent between runs,
we implemented a function that hashes the nodes, and we
print that hash when creating a new graph. To integrate the
graph library as well as the OSM and GTFS parsing with
the rest of our infrastructure, we utilize PyO3 to expose a
Python interface for some of our functions. This allows us
to create a graph and perform routing from Python, while
the data and computations lie in Rust. Each time we update
the graph library, we generate a pip-installable wheel using
GitHub Actions for both Linux and Intel Mac. On the Python
side, we support using the u64 representations of H3 indices
as input to the routing functions.

The experience of using the graph library looks like this:

graph = PyH3Graph( weight_options ={}, k_ring
=2, l a y e r s=" a l l " )

graph . c r e a t e ( osm_path=" denmark . osm . pbf " ,
gt f s_paths =[ " r e j s e p l a n e n . z ip " ] )

We provide some debug output on graph creation as well
as the hash of the finished graph:

p r o c e s s i n g osm pbf f i l e : denmark . osm . pbf
converted OSM f i l e i n to 14356812 edges
osm graph created with 13470012 nodes in

87.322426 s
g e t t i n g GTFS feed from r e j s e p l a n e n . z ip
route s : 1631

g t f s graph crea ted with 103525 nodes in
9.1905575 s

merged g t f s graph in to osm graph , now has
13546387 nodes , took 120 ms

hash : 1352011021897877533

The graph can be customized by selecting layers, the k-ring
search radius for mapping an H3 input to nodes and options
for weighting. A k-ring of 1 includes all six neighbors of the
hexagon, at k=2 it contains the neighbors of the neighbors.
We use the k-ring to map origins or destinations that are not
in the graph to a node that is. Previous literature has used
nearest neighbor search with a threshold of 100 m to establish
interlayer connections (16). Using k-ring search with sufficient
k-rings would produce an equivalent outcome to the previous
method. Optimization of the k-ring parameter is an area of
future work. By default, we use a search radius of 2, which
translates to a ring with a diameter of about 40 meters. The
weight options allow the customization of walking and bicycle
speed, set a multiplier to the wait time at transit stations, and
specify the penalty value for switching to and from the bicycle
layer. The hash is used to ensure that re-processing the same
data results in matching graphs. The hash is not stable across
different versions of the graph library.

Fig. 5. The n-minute statistic is shown for various network types in various Danish
municipalities. Municipalities are sorted by descending population density. Ærø
Kommune, an island in southern Denmark, is clearly an outlier, and can be explained
by the municipality’s geography and POI spatial location. An inspection of the POI
spatial distributions reveals that Ærø’s single pharmacy on the island is on the east
coast. The East/West span of the island is nearly 30 kilometers, and, with limited
cycling infrastructure, Ærø becomes very difficult to traverse without public transit.
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(a) Percent accessibility benefit contributed by current bicycle and transit infras-
tructure. The municipalities are ordered by population density in descending
order.

(b) Percent accessibility benefit contributed by improved bicycle and transit
infrastructure.

Fig. 6. Accessibility benefit plots for (a) current and (b) improved infrastructure.

5. Results

We measure the n-minute statistic for several Danish mu-
nicipalities, Denver and Los Angeles with varying mobility
infrastructure to show the potential effects multi-modality
has on accessibility, and to highlight accessibility inequalities
between countries, municipalities, and geography types.

The following section presents the results of our travel time
estimates in Denmark and the United States with varying
mobility infrastructure. We also identify potential explanatory
factors contributing to the measured n-minute statistic.

5.1. Denmark: Municipality Comparison. We randomly sam-
ple 3 Danish municipalities for each of 5 population density
quantiles in a population of 98 municipalities, then take the
top 2 and bottom 2 municipalities for a resulting 19 in our n-
minute measurement for Denmark. Densities range from 14.5
people per square kilometer for Læsø Kommune to 11909.0
for Frederiksberg Kommune. The mean population density is
600.1 while the median is a much lower 119.3. The majority of
Danish municipalities are less dense, more rural areas, while
the outlier dense urban areas of Copenhagen and Frederiksberg
raise the mean.

For each of our 19 selected municipalities, we compute the
n-minute statistic for varying combinations of infrastructure
types. These infrastructure types and their descriptions are
the following:

• All - Includes walking, biking and transit layers.

• Walk - Includes only walking layer

• Walk and Cycle - Includes only the walking and cycling
layers.

• Walk and Transit - Includes only the walking and transit
layers.

• Improved Cycling - All walking paths are modeled as also
including dedicated cycling infrastructure.

• Improved Transit - All layers are included, and transit
average wait times are reduced to 33% of their original
values.

We provide networks with altered and or removed layers to
be able to isolate the effect of certain layers. In Figure 5 we
show the calculated n-minute statistic for all municipalities in
Denmark for all network types. By comparing the network
with all layers to Walk and Cycle, we can isolate the benefit
that transit contributes to the improved accessibility. For
example, for Favrskov Kommune, the network type All shows
a decrease in the n-minute statistic of 4.4 minutes over the
Walk and Transit layer. We can interpret this as current
cycling infrastructure contributing a 4.4 minute decrease in
the median maximum travel time across POI categories and a
4.4 minute increase in accessibility. Our results show current
cycling and transit infrastructure contribute to reduced travel
times in all areas. We can clearly see that the inclusion of
various infrastructures alters the level of measured accessibility,
suggesting that without inclusion of all layers, we may be
underestimating accessibility.

Although we see increases in accessibility in all areas from
the inclusion of bicycle and transit layers, the increase is not
constant across all population densities. We can see in Figure
6a that areas of high population density receive the largest
percentage decrease in travel time when including cycling in-
frastructure, and less dense areas receive the largest decrease
in percentage travel time from public transportation. Con-
tributions of cycling to accessibility decrease as population
density falls, whereas contributions of transit to accessibility
increase as population density falls. The preceding analysis
estimates to what extent current infrastructure is contributing
to accessibility. We also use our new methodology to sim-
ulate the effect of potential changes to cycling and transit
infrastructure.

We consider our two cases of infrastructure improvement,
using network types Improved Cycling and Improved Transit.
Figure 6b shows that both network types show improvements
across population densities, with the main exception of Im-
proved Transit giving relatively minimal advantages in areas of
high population density. This makes sense, given that transit
wait times in areas like Copenhagen are already very low, so
the benefit of their reduction is likely small. On the extreme
end, Improved Cycling shows reductions in the n-minute statis-
tic for rural areas as high as 57%. We hypothesize, that the
large effects produced by our model are a result of a lower pri-
ority and therefore a lack of sufficient infrastructure for cycling
and public transit as opposed to car transport in rural areas.
A manual inspection of the network in rural areas shows that
bike and transit infrastructure are very limited. The routing
engine then chooses between walking to find the nearest bike
path or waiting very long wait times for low frequency transit.
When adding the Improved Cycling layer, all walking to transit
is replaced with cycling. Because cycling speed in our model
is 3 times that of walking, we expect this to be a large source
of the simulated travel time reductions. Larger sample sizes
in Denmark and beyond are necessary for more robust results
in this area.
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Fig. 7. Breakdown of Danish municipalities by travel time to each POI category
using current infrastructure. Boxplots represent the median, first Inter-Quartile Range
(IQR) and 1.5 times the IQR for the center lines, box ends, and whiskers respectively.
Outliers are not shown. Note that at the time of plot generation, Samsø did not have
a building tagged as a pharmacy, and so we leave out this category in the calculation.

The single aggregated n-minute statistic at the level of mu-
nicipality hides the geographic distribution of travel times for
each POI category. We therefore show box plots of travel times
(note, these are not the n-minute statistic) to each category of
POI for Danish municipalities in Figure 7. Variance becomes
extremely large in the more rural areas, partially explained
by the decrease in population density. Interestingly, the final
4 least dense municipalities see a slight inverse relationship
between density and the distribution of n-minute statistics.
Upon further inspection, Lemvig Kommune simply has very
few pharmacies, low density, and many rural towns with lim-
ited public transport causing its very high pharmacy travel
times. Samsø and Læsø are both small islands. We hypothesize
that even though their densities are low, the island geography
sets physical bounds on the furthest distance one must travel
to reach POIs, and as a result they do not have high out-
liers. Finally, Tønder seems to have very well distributed town
centers compared to Lemvig, thereby reducing the chance of
having very remote residential areas. Further analysis of the
factors which contribute to the n-minute statistic is an area
of future work.

The n-minute statistic is sensitive to the category with the
maximum travel time for each origin. We show the travel
time distributions by category for Denmark overall in Figure 8.
Clearly, pharmacies are the least accessible POI in Denmark.
In fact, pharmacy ends up being the category which determines
the n-minute statistic in 58.7% when taking the max across
categories for each origin in Denmark as a whole. In the other
extreme, even though sport POIs are on average the closest
POI to our origins, supermarkets are least often the farthest

Fig. 8. Travel time box plots for Denmark Overall. Boxplots represent the median, first
Inter-Quartile Range (IQR) and 1.5 times the IQR for the center lines, box ends, and
whiskers respectively. Outliers are not shown.

category. Supermarkets are the farthest POI for only 4.5% of
origins across Denmark.

Overall, our results suggest bicycle and transit layers con-
tribute to the n-minute statistic for a given location. When
comparing the n-minute statistic across municipalities, we see
a clear negative trend between population density and the n-
minute statistic. This begs the question, what is the quantified
relationship between the n-minute statistic and population
density? To address this, we fit a univariate regression and
find a strong log-linear relationship between population den-
sity and the n-minute statistic. See Figure 13 in the appendix.
More specifically, the log of population density explains 90%
of the variance in the log of the n-minute travel time. Addi-
tionally, the Pearson correlation between the two variables is
−0.95. These results point to a strong relationship between
population density and the n-minute statistic. We hypothesize
higher densities bring POIs and network features closer to-
gether, thereby increasing accessibility. Less dense areas likely
benefit more from an increase in network density, e.g., when
creating more safe cycling paths through a suburb.

5.2. Case studies. In this section, we highlight a few select
cities in Denmark and the United States and look at how
they differ in the n-minute statistic. We give explanations by
breaking down the calculation by network type and categories
of points of interest.

5.2.1. Copenhagen, Denmark. For the purpose of this case study,
we include Frederiksberg Kommune in our analysis, as both
Frederiksberg Kommune and København Kommune form the
urban core of the Copenhagen area. Figure 14 in the appendix
shows sampled origins, which are used for the n-minute calcu-
lation. Origins are sampled from the list of all residential H3
indices, which were collected by processing the GHSL data.
Most calculations were done using 10,000 origins, except for
Dragør Kommune, where we only used 1000 origins due to its
small size.

We find that Copenhagen can be described as being around
an 8-minute city if we round down with our definition of
essential POIs. We break down the n-minute values by network
type in Table 2. The table shows that even when including
less common POIs like libraries in the list of destinations, the
values remain low. We find that adding the option to cycle
improves the n-minutes, but the impact of allowing public
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Fig. 9. N-minute values for Copenhagen and Frederiksberg, using the full network and
a simulation of 10,000 origins. The map shows the median for each neighborhood.

Network type Essential POI’s Essential POI’s and libraries

Walk 10.28 13.59
Walk and Cycle 8.41 10.41
Walk and Transit 9.90 11.84
All 8.34 10.08

Table 2. n-minute values for Copenhagen, for only essential POI’s and
including libraries

transit only becomes clear when adding less frequent points
of interest. After removing outliers, which are values greater
than the 95th percentile, the worst-case travel times we see
are about 17 minutes on the full network.

The map in Figure 9 shows the n-minute values over all
origins in Copenhagen. We can see that in most parts of the
city, the n-minute values are below 10 minutes, with some
areas that are further away from the city center reaching a
value of 17 minutes. Especially the inner city as well as parts
of Nørrebro and Østerbro produce very low values, with the
neighborhood median being around 7 minutes.

When investigating the difference between the trip lengths
for each origin on the four network types, we can see that for
most origins, there is no or almost no benefit in travel time
when given the option to bicycle or use transit. For 80% of
trips, the option to use the full network results in either no
travel time benefit or a benefit of two minutes or less. For 90%
of trips, the benefit is less than 4.5 minutes. The histogram
in Figure 10a shows the travel time benefit of using the All
network over the Walk network. It also shows that almost
all trips with a travel time benefit over five minutes are to
libraries or pharmacies.

Dragør Kommune, which lies just outside the city of Copen-
hagen on the island of Amager, displays a slightly different
situation. For Dragør, there is a benefit of 2 minutes or more
for half of the trips. 20% of trips see a benefit of over 8 min-
utes, while 10% see a benefit of over 15 minutes. Figure 10b
shows the histogram of travel times for Dragør. It leads us
to the conclusion that using multiple transportation modes
such as public transit and cycling provide the most benefit
in under-served areas when it comes to access to essential
services. In dense urban areas such as the city of Copenhagen,

(a) Travel time benefit simulation of 10,000 origins for Copenhagen
and Frederiksberg. 30,000 trips with no benefit are not displayed in
this plot.

(b) Travel time benefit simulation of 1000 origins for Dragør Kommune.
Trips with no benefit are not displayed in this plot.

Fig. 10. Travel time benefit of the All network over just the Walk network for (a)
Copenhagen and (b) Dragør. The three dashed lines mark the 0.5, 0.8 and 0.9
quantile.

most points of interest are reached by walking, and public
transit would only gain relevance for longer trips across the
city.

For Dragør, we investigate the effect of the time of day on
the n-minute statistic. We look at the median and the 95th
percentile at two different times of a week. The median is
what we report as the n-minute statistic, but to see the effects
of reduced transit service, we also report the 95th percentile of
travel times. We investigate Monday morning at 9:00, which
is a time of high service where many are using transit for
commuting, and on Sunday morning at 1:00, where most bus
lines are no longer running. We acknowledge that this is not a
time of day when the points of interest we selected are relevant
or open, this analysis is more focused on the difference in our
statistic caused by reduced transit service. The median travel
time at both points in time, Monday morning at 9:00 and
Sunday morning at 1:00, is very similar with 13.1 and 13.2
minutes respectively. But when looking at the 95th percentile,
we can see a clear difference; the values are 29.8 minutes and
41.9 minutes. This shows again that transit plays an important
role for under-served origins that are further away from points
of interest.

5.2.2. United States. We choose to look at Denver, Colorado,
because it has a similar population to Copenhagen. Notably,
Denver covers roughly double the land area as Copenhagen
does. Table 3 shows the values for Denver. The option to use
the bicycle network results in a significant travel time benefit
when comparing to the walk network. When breaking down the
results by category, we see striking differences between Denver
and Copenhagen. While sport facilities and parks are in close
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Fig. 11. n-minute values for neighborhoods in Denver, CL. The simulation used
10,000 origins and the full network. Note that the top-right neighborhood is the Denver
Airport. We investigated origins identified by the GHSL data in this region, and some
seem to be inaccurate. The Airport only appears in simulations that include the transit
network, as it is not accessible by bicycle or foot and includes none of the selected
amenities.

reach for almost all origins in both cities, the travel times to
supermarkets are much longer in Denver than in Copenhagen.
In Denver, the median travel time to a supermarket is 10
minutes on the full network, as opposed to just 4 minutes for
Copenhagen. The map in Figure 11 shows that the city center
of Denver is accessible, with values as low as 8.7 minutes. The
more suburban parts of the city are doing noticeably worse
on this metric.

We also compare Denver to Los Angeles, known for being
one of the most car-centric cities in the US (39). See the
exact values for Los Angeles in 4 in the appendix. The n-
minute values for Los Angeles are about 1.5 minutes more
than Denver’s. Much of that difference can be explained by a
higher value for parks and sport facilities. On the full network,
travel time to sports and parks for Los Angeles have a median
value of 9 and 7 minutes respectively, while in Denver the
median values are 4.3 minutes for parks and 6.7 minutes for
sports.

The n-minute statistic is dominated by the category of
POI’s with the worst travel time. We find that for Los Angeles,
56% of origins report the distance to the nearest pharmacy
to be the highest. For 16% of origins, the distance to the
nearest supermarket is the dominating metric. For Denver, the
distribution is 65% for pharmacies and 19.6% for supermarkets.
Given that most people need to visit a supermarket more
frequently than a pharmacy, this statistic is relevant. One can
argue that the perceived n-minutes for an origin would divert
from our statistic, both when a rare POI is the dominating
factor, but also when a frequently needed POI is far away.
Creating more individualized versions of the n-minute statistic
is as an area of future work.

This in-depth look into the n-minute of specific neighbor-
hoods reveals the disparity in accessibility hidden by city-wide
n-minute statistic. Further analysis into the inequalities re-
vealed by the n-minute statistic is an area of future work.

5.3. Rejseplanen routing comparison. To ensure that our
model produces sensible travel times, we compare our outputs
to the routing service provided by Rejseplanen. Rejseplanen is
the organization that manages transit timetables and routing

Network type Essential POI’s Essential POI’s and libraries

Walk 17.47 21.16
Walk and Cycle 13.38 15.42
Walk and Transit 16.23 18.83
All 13.20 15.15

Table 3. n-minute values for Denver, for only essential POI’s and
including libraries

Fig. 12. Distribution of routing time differences between our full network (All) and
Rejseplanen. The plot shows the two distributions of routing time differences between
our full network (All) and Rejseplanen, as well as our network with only walking and
transit and Rejseplanen.

services for all Danish transit providers. We find that our
model produces comparable travel times to Rejseplanen. Our
All network creates slightly faster travel times on average, while
the network without the option to cycle, Walk and Transit, is
on average 4 minutes slower than Rejseplanen. The evaluation
is performed by sending 110 random routing requests within
the bounds of Copenhagen to the Rejseplanen API, via a
Cloudflare worker proxy. The origins and destinations were
random nodes from the graph. The Cloudflare worker we built
converts the H3 indices into latitude and longitude and sends
the request to Rejseplanen in the correct format. It returns
the original Rejseplanen response in JSON format. Using the
worker makes requests to the API more intuitive but provides
no performance benefit. For comparability reasons, we set
the time of day parameter in our routing to be the current
time, which is the one Rejseplanen uses for its routing. The
comparison was performed on a Monday morning. Routes
where Rejseplanen returned no result were omitted. We only
selected the first result that was returned by the API.

Overall, we find that our full network is on average 3.7
minutes faster, with a standard deviation of 9 minutes, while
the network without the option to cycle is on average 2.4
minutes slower, with a standard deviation of 8.4 minutes
(Figure 12). This could be explained by the fact that we,
as opposed to Rejseplanen, do not perform timetable-based
routing but instead model the expected wait time. Figure 15 in
the appendix shows that for most routes, the calculated travel
time is similar, however there are a few outliers. Rejseplanen
will not recommend cycling routes by default, so we assume
that some routes are faster when allowing for cycling. Although
this does not suggest anything conclusive about our routing
compared to real travel times, the analysis does show that our
routing system predictions are comparable to an authoritative
routing source. A more rigorous analysis with a larger sample
size would be necessary to provide further validity to our
model.

12 |



6. Discussion

Ultimately, the effects of travel time reductions are likely to
be felt on a much smaller scale than entire cities. Adding
or removing infrastructure such as single bicycle lanes or
transit lines happens on a per-neighborhood basis, and thus
the n-minute city single statistic (one number for an entire
city) is likely too coarse a measurement to be used for these
purposes. A benefit of our n-minute statistic is that it can be
calculated on nearly every scale; from individual buildings to
entire countries. As a result, we could provide this statistic
for any geographic area, including neighborhoods, where the
impact of new infrastructure could be estimated.

Single summary statistics inevitably mask a large amount
of variance; however, they serve to be easy to interpret scores,
widening the potential audience and facilitating comparability
across cities. So, while we present each city as a single value,
we also display distributions of the n-minute score and more
fine-grained case studies to include more information about the
equality of accessibility. Additionally, the n-minute statistic’s
simplicity comes at the cost of leaving some relevant factors of
accessibility uncaptured. For example, there could be a case
where two locations have the same n-minute score, but for one
location all other POIs, besides the farthest one, are all much
closer than the other location’s POIs.

A simpler method to impact the n-minute statistic could be
to provide POIs in areas where they do not yet exist. This has
probably the biggest possible impact on the metric; building
a new pharmacy in a neighborhood that did not have one
before will drastically reduce travel times for all people in
the area and thus lower the n-minute value. This shows that
our tool has potential value not only for urban planners in
municipalities, but also for businesses that want to determine
the ideal location for a new store. The tool can be adjusted to
include the specific points of interest a business is interested
in, such as their own and their competitors’ locations, to find
areas that are under-served.

6.1. Applying the N-Minute calculation to areas of low popula-
tion Density. The initial intention of the 15-Minute-City was
meant to be applied to exclusively urban areas. The lack of
mention for rural areas in Moreno’s paper on the 15-Minute-
City is reflected in the previous research. None of the previous
literature included an analysis of the 15-Minute-City outside
of large cities. Despite this precedent, we decided to extend
our analysis to areas of lower population density. We argue
that accessibility to essential POIs should also apply to people
living in more rural areas, with the caveat that comparisons
should be between areas of similar population density. Given
the strong relationship between population density and the
n-minute statistic within Denmark, comparisons of cities using
the n-minute statistic may make the most sense across areas of
similar population density. Accessibility comparisons between
rural and urban areas alone would likely not yield interesting
results, given huge contrasts between geographies, populations,
and residential layouts. Identifying actionable items as a result
of differences in the n-minute statistic therefore may be most
fruitful comparing areas of similar population density. For
example, asking why a rural town is less accessible than a
big city does not provide reasonable recommendations into
how the rural town can improve. This also does not suggest
that the city can be labeled accessible when the comparison is
clearly unfair. Comparing two towns of similar densities, how-
ever, may provide more reasonable assessments of individual
town accessibility.

Our results have show building dedicated bicycle infras-

tructure or improving transit may increase accessibility for
under-served areas. In reality, infrastructure additions like
these are likely costly. A more thorough cost-benefit analysis is
a topic of future work, but could provide powerful insights for
decision makers to be able to pay for increased accessibility in
their area. Some previous work has shown, for example, that
Copenhagen’s extensive bicycle network provides an annual
societal benefit of €400,000 per kilometer of bicycle lanes (32).
For rural areas, we can see a bigger benefit from transit infras-
tructure and suggest that increasing coverage and frequency of
bus or train services would significantly impact the n-minute
statistic. It might, however, not be financially feasible to in-
crease bus service in every area, which is why car and bicycle
infrastructure may continue to be important in rural areas.
If essential points of interest are reachable comfortably and
safely by bicycle or bus, people may use these services more
often as a result of induced demand. Induced demand suggests
that the easier using active modes of mobility or transit is,
the more those modes will be used (40).

6.2. Denver and Los Angeles. One explanation for why cities
in the US are less accessible could be the well documented,
car-centric development cities in the US have undergone over
the past century. Car-focused development has been suggested
to have created a lock-in effect, where participation in society
often requires a car (41). Simple to understand statistics
such as our n-minute measurement may make the concept
of human-centered neighborhoods more approachable, giving
a current state and a setting a clear goal to work towards.
A neighborhood that currently achieves a 21-minute score
in our statistic can set the goal to reduce that to 15 and
measure their progress. Overall, there is no universal n which
is reasonable for all cities. As such, setting n-minute goals
can, and perhaps should, be set according to the needs and
wants of a community.

6.3. Limitations. Our approach has limitations including data
quality issues, absence of exact timetable routing, and an
impersonalized definition of essential POI. As mentioned in
Moreno’s paper, due to the high variability in the needs of
individuals, there can be no general list of points of interest
which suit all people. Our calculation excludes measures of
proximity for social life, culture and work, which may be
essential for many. The model also lacks certain important
details, like, for example, the type of school one lives near.
Including more fine-grained details would better tailor the
model to the needs of specific individuals, however OSM often
does not include such details, as is the case with schools.
For this information, we would have to rely on municipal
data, which is not standardized and would therefore hinder
scalability. Especially for cities in the United States, we
would have liked to incorporate information about pedestrian
infrastructure in the construction of the walking network.
However, OSM tags on the presence of sidewalks are not
consistent enough to be a reliable source. Therefore, we assume
that all roads we selected have a sidewalk or are otherwise
walkable, but that might not be the case in reality. Although
OSM data has been shown to be reliable in previous studies,
any use of crowdsourced data comes with caveats in reliability.
Because the n-minute statistic takes the maximum distance to
POIs, the metric is very sensitive to the presence of accurately
tagged POIs. Finally, although we include time-sensitive
frequency based routing, we do not calculate exact wait times
from public transport timetables. This is a planned feature
for a future version of the software package.
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6.4. Expansions. A major design decision when building our
analysis tool was to make it as versatile and expandable as
possible. Any city which has publicly available transit data
and good OSM coverage can be investigated in the same way
we showed here. Although we only look at several Danish
municipalities and two US cities, scaling to hundreds of cities
may only take one week of work, instead of months, using our
tool. Additionally, any data that can be mapped to an H3
index can be added to the graph and included in routing. This
would allow for analyzing the effects of new bus lines, bike
infrastructure and more. In addition to that, the impact of
infrastructure closures can also be analyzed by deleting edges
from the graph or changing their weights. While not all of
these features are exposed to the Python API, they are present
on the Rust side of the project. Overall, the system has been
designed from the beginning to scale well, as the memory
requirements grow linearly with respect to the input and n-to-
n point routing scales with the number of available CPU cores.
The codebase we provide is versatile, maintainable and high
performance, and we hope that by making it available under
a permissive open-source license, it will help other researchers
in the area.

7. Conclusion

In this thesis, we introduce a new multi-modal network build-
ing tool which encompasses all sustainable modes of trans-
portation, then apply the tool to a case study comparing
the accessibility of cities within Denmark and the US with a
proposed new, simple accessibility metric.

The n-minute metric is designed to be applicable to cities,
towns, and areas around the globe and provides a simple
method of examining any area’s progress towards being a liv-
able, equitable 15-Minute-City or better. Our tool can perform
the necessary calculations fast, is memory efficient, and com-
bines the advantages of previous approaches. More specifically,
our implementation is a comprehensive multi-modal network
building tool which encompasses all sustainable modes of trans-
portation, uses high resolution network features and allows
for time-sensitive routing. We combine data sources through
an efficient pipeline, relying on H3 hexagons to simplify the
setup while minimizing inaccuracies. Our system is built to be
extended and adapted easily; many scenarios can be simulated
by adjusting origins and destinations, as well as routing and
graph setup parameters.

Applying our methodology to a case study of the US and
Denmark, we find that current bicycle infrastructure con-
tributes to reductions in travel time, with the greatest benefit
for areas of higher population density. We find current transit
infrastructure contributes to increases in accessibility as well,
however the largest benefit is in areas of lower population
density. We further show the potential of cycling and tran-
sit by simulating improved versions of each. Our estimates
show that more widespread cycling infrastructure and more
frequent transit service both contribute significantly to acces-
sibility. Compared to the US, cities in Denmark score better
on the n-minute statistic, however differences are not so stark.

Finally, we show that our estimated travel times are compa-
rable to estimates by the official transit provider in Denmark.
Further validation is needed to be able to claim that our model
accurately models travel time.

7.1. Future Work. Our project just scratches the surface of what
is possible with a true multi-modal network analysis. The data
processing pipeline and infrastructure allows for the analysis
of changes to the network and can provide insights into broad,

neighborhood-wide effects of infrastructure upgrades. For
example, a new metro line could be assessed by adding another
layer to the graph and re-running the analyses. Although we
applied a very general POI filter, the n-minute calculation
could easily be adapted to account for different living situations
by including more categories of points of interest. More specific
definitions of accessibility requiring more than one instance of,
e.g., a supermarket to be nearby is another possible extension
of the project. In terms of improving performance, the network
could be expanded to include timetable-based routing to be
more accurate. Additionally, GPS trace data could be used
for more robust validation of the model, and potentially be
used to tune the network to represent expected, data driven
travel times.
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Appendix

A. Usage instructions for the n-minute city Python tool

Our tool is available on GitHub: https://github.com/hextransit/n-minute-city/

To use the Python interface, install the wheel using pip:

# l i n u x
pip i n s t a l l wheels /graph_ds −0.1.0−cp37−cp37m−manylinux2010_x86_64 . whl

# mac ( i n t e l )
pip i n s t a l l wheels /graph_ds −0.1.0−cp37−cp37m−macosx_10_9_x86_64 . whl

The wheels are generated automatically by GitHub Actions.
Graphs can be created from OSM and GTFS data using the create function. The graph will be multi-layered, with a base

layer of hexagon cells for the walking network, a layer for the bike network and one additional layer for every route in the
GTFS data. The edge weights represent time in minutes. The chosen H3 hexagon resolution is 12. Please ensure that the OSM
file contains coordinates on ways and that the GTFS feed is valid beforehand.

Create a new graph object:

graph = PyH3Graph( weight_options={
bike_penalty : 1 . 0 ,
wait_t ime_mult ip l ier : 1 . 0 ,
walk_speed : 1 . 4 ,
bike_speed : 4 . 5 ,

} | {}>, k_ring=2, l a y e r s=" a l l " )
graph . c r e a t e ( osm_path="<path>" , gt f s_paths =[ "<path>" ] )

The layers keyword argument allows specifying the layers the graph should contain after processing. The walk network is
always included. Supported layer tags are: all (default), walk, walk+bike, walk+transit.

PyH3Graph exposes two functions for pathfinding:

• matrix_distance – returns the distance between all hexagon cells

• dijkstra_path – returns the path between two hexagon cells

H3 cells need to be input in their u64 integer representation. Only cells on the base layer are valid start and end points.

# g e t the d i s t a n c e matrix
d i s t a n c e s = graph . matr ix_distance ( o r i g i n s =[u64 ] , d e s t i n a t i o n s =[u64 ] , hour_of_week=int ,

i n f i n i t y=Optional [ f loat ] , dynamic_inf in i ty=bool )

path = graph . d i jks t ra_path ( s t a r t=u64 , end=u64 , hour_of_week=Optional [ int ] )

For testing purposes, you can obtain a random node from the graph by calling graph.get_random_node()
The optional hour_of_week parameter allows the transit layers to model expected wait time based on the time of day. The

input expects an integer representing the hour of the week, starting at 0 for Monday 00:00 and ending at 167 for Sunday 23:00.
The parameters infinity and dynamic_infinity are used to set the maximum distance between two cells. If

dynamic_infinity is set to True, the pathfinding will lower the infinity value during calculation. This is only useful
when searching for minimum distances.

If a given index is not present in the graph, the pathfinding will attempt to map it to an index nearby, with a maximum
permitted distance of k_ring cells. If no nearby index is found, an empty list will be returned for that origin.

B. Hardware

We used the following hardware configuration to run the simulations for this project:

• CPU: Intel Core i7-12700F with 12 cores and 20 threads.

• RAM: 64 GB

• Network: 1 GB/s internet connection
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C. Additional Figures

Fig. 13. Univariate Linear Regression between population density and the n-minute statistic for selected Danish Municipalities. Both axes are log scaled.

Fig. 14. 1000 random origins in Copenhagen and Frederiksberg. Origin sampling is informed by the data collected from GHSL, which differentiates between residential and
commercial buildings. We only select residential points of origin

Fig. 15. Comparison of routing travel times between our networks and Rejseplanen. Individual trips were sorted by the travel time on our full network. Each trip length was
calculated using our network, our network with no bicycle layer and the Rejseplanen API. The black dots show the difference between our routing and Rejseplanen.
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D. Additional tables

Network type Essential POI’s Essential POI’s and libraries

Walk 20.57 24.07
Walk and Cycle 14.97 16.82
Walk and Transit 19.22 21.55
All 14.95 16.69

Table 4. n-minute values for Los Angeles, for only essential POI’s and including libraries
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