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This supplement to the paper “Multirelational organization of
large-scale social networks in an online world” contains detailed
information on the various network types analyzed, an overview
of the game, notations of measures used, a detailed analysis of
signed triad dynamics, and the null model and STC model for
the social balance part.

Different Types of Social Interactions.
• Friendship and enmity networks. Players can anonymously mark

others as friends or enemies, for any reason. The marked
players are added to the marker’s personal friends or enemies
list. Additionally, every player has a personal “friend of” and
“enemy of” list, displaying all players who have marked them
as friend or enemy, respectively. Friend and enemy markings
can be removed anytime.

• Communication networks. Private messages (PMs) are the
prevalent form of communication within the game. It is similar
to e-mail—a PM is only seen by sender and receiver.

• Trade networks. These are extracted by considering two kinds of
trade possibilities between players: Either players meet and
exchange game money and/or commodities, or players visit
commercial outlets of other players and buy/sell commodities
or equipment.

• Attack networks. For extracting attack networks, we select all
attacks carried out by players on other players or on commer-
cial outlets.

• Bounty networks. Links in bounty networks represent bounties,
which are amounts of game money placed on other players or
on their commercial outlets. Any player can collect a bounty by
terminating the bountied player or destroying his commercial
outlet.

How Players Get to Interact with Each Other. For a basic understand-
ing of how the implementation of the game may shape the pat-
terns of interactions between players, we give here an overview of
the mechanisms and motivations leading players to get to know
and to interact with each other. For more details see ref. 1.

Every game action carried out by a player (trade, movement,
attack, etc.) costs a certain amount of so-called action points
(APs). These points can not exceed a maximum value. For players
having less APs than the maximum, every few minutes a small
number of APs is replenished automatically. Once a player’s
character is out of APs, she has to wait to be able to play on.
As a result, the typical Pardus player logs in once a day to spend
all her APs on several activities within a few minutes. Social
activities such as writing PMs do not consume APs.

A Pardus universe has the shape of a two-dimensional lattice
(bounded in several ways) on which players can move (movement
consumes action points). On each field (the smallest unit of this
lattice), a player has the option to construct a building. Buildings
act both as production sites and trade outlets for certain com-
modity types. Typically, a player has up to five buildings. Players
may visit buildings of other players to trade game money for com-
modities or vice versa. A player has a trade tie with every other
player who traded at her buildings, or whose buildings she traded
with. Additionally, there is the (much rarer) possibility that two
players meet on the same field and exchange game money and/or
commodities. Attack comes with the same two options: Either a
player attacks the building of another player or the player himself
(for this interaction they again have to stand on the same field).

All other relations (communication, friendship, enmity,
bounty) are independent of location in space, i.e., every player
may write PMs to, mark as friend or enemy, or set a bounty
on any other player at anytime, provided she knows the target’s
character name. This name is visible on the navigation screen
when players stand on the same field, in an online list which
shows all currently online players, in chat channels, and in the
game’s forums provided a player has posted a message in the cor-
responding place, as well as in several sections of the game such
as on news pages. We suspect that the type of acquaintances a
player makes during the course of the game depends strongly
on her involvement in social activities. If the player does not show
the preference of using provided ways of communication (PMs,
chats, forums), her partners of friendship/enmity/bounty interac-
tion are likely to show a high causal dependency with her visited
locations in the game universe. On the other hand, a frequent use
of communication tools may reduce this dependency, because
then interactions take place with players independent of location.

Besides character names and online status being displayed on
every player’s personal PM contacts page for quick access, the
friends and enemies lists serve game-mechanic purposes:
Friends/enemies are automatically or optionally included/
excluded for certain actions. For example, enemies of building
owners are not able to use the services offered in the respective
places. Note that friend and enemy markings need not necessarily
denote affective friendships or enmity, they rather indicate a cer-
tain degree of cooperative or noncooperative stance motivated by
affective and/or cognitive incentives. However, we assume these
two motives to coincide to a considerable extent, e.g., it seems
highly unlikely that someone marked as enemy/friend due to ra-
tional considerations at the same time constitutes the affective
opposite of friend/enemy within the game (and vice versa).

We have no information about external forms of relation or
communication, e.g., players being real-life friends or communi-
cating via external tools. Further, so far we do not know how well
structure and dynamics of different types of social networks in
Pardus match comparable social networks in real life, with a
few exceptions (1): We have shown good agreement of PM net-
work features with properties of mobile phone call networks and
revealed findings well according with classic sociological hypoth-
eses. Further, we have begun studying positive and negative net-
works as single entities and found results highly consistent with
social balance theory, as well as a coincidence of network proper-
ties (triad significance profiles) with nonvirtual social networks.

Comparison with Existing Datasets. To our knowledge, the only
large-scale dataset incorporating multiple interactions is the Fa-
cebook network of Lewis et al. (2). Pardus offers several advan-
tages over this Facebook data. The Facebook network consists of
three types of interactions between users: declared friendship re-
lationships, picture friendships (being tagged in an online photo
by a user), and dorm roommate friendships. However, two of
these three types of interactions lead to a tainted representation
of the social system. First, the friendship network of Facebook is
known to be biased by the visibility of the friends of a user on its
webpage (6). In Pardus, friend and enemy lists are completely
private, meaning that no one except the marking and marked
players have information about positive or negative ties between
them. Our data thus represents a more realistic social situation, in
the sense that social ties are not immediately accessible to the
public but need to be found out by communication with or by
careful observation of others. Second, dorm membership is ob-
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tained from the projection of a bipartite network. This procedure
is known to distort the number of cliques in a network (3). For
this reason, we only focus on one-to-one interactions between
players and discard indirect interactions such as the participation
to a chat. Finally, the Pardus dataset has the advantage to capture
a broad range of social interactions, because the players are im-
mersed in the game and therefore not only communicate with one
another, but also engage in collaborative/antagonistic actions.

Mathematical notations—Overlap. The standard way to represent a
network is through its adjacency matrix Aij which, for an un-
weighted, undirected network, is a symmetric matrix whose ele-
ments Aij are equal to one if there is a link between i and j, and
zero otherwise. To incorporate the existence of multiple relations
(multiplex networks), it is common to define the tensor Aij;α,
sometimes called supersociomatrix (4). This tensor has dimen-
sion N ×N × R, where N is the total number of nodes and R
is the number of different link types between the same set of
agents. For a fixed value of α, Aij;α is the adjacency matrix of
the network defined by link type α. By construction, the proper-
ties of each network can be obtained from its adjacency matrix
Aij;α. For instance, the degree ki;α of a node i is given by
∑jAij;α, the total number of links in network α is
Lα ¼ ∑iki;α∕2. The number of paths of length n between nodes
i and j is given by ðAn

αÞij. A whole new layer of complexity opens
once the interplay between different sorts of networks is consid-
ered. From a mathematical point of view, multiplexity can be
revealed by coupling different adjacency matrices. For instance,
the (link) overlap Oαβ ¼ 1

2
∑ijAij;αAij;β between the graphs α and β

counts the number of links they have in common. Similarly, the
multiplicity mij ¼ ∑αAij;α of a link between i and j counts the
number of different links between these nodes.

Correlation measures. Several network measures are based on the
Pearson’s correlation between two quantities. For two random
variables X and Y with mean values X̄ and Ȳ , and standard
deviations σX and σY , the correlation coefficient ρðX;Y Þ is
defined as:

ρðX;Y Þ ¼ E½ðX − X̄ÞðY − Ȳ Þ�
σXσY

∈ ½−1;1�: [S1]

The reciprocity coefficient r is the correlation coefficient be-
tween the transposed entries of the adjacency matrix of a directed
graph, X ≡ Aij, Y ≡ Aji (5). Similarly, we introduce the coeffi-
cients ρðkinα ;koutα Þ to evaluate the correlations between in-degree
and out-degree around the same node in a graph α and ρðkα;kβÞ,
to evaluate the correlations between the degrees of a node in the
two different graphs α and β. The coefficient ρðkinα ;koutα Þ is a
measure of the deviation of a directed network from a Eulerian
network, i.e., ρðkinα ;koutα Þ ¼ 1 only for a Eulerian graph, namely
kini;α ¼ kouti;α for each node i, while ρðkα;kβÞ measures the correla-
tion of the degree centrality of the same node in different net-
works. The coefficient ρðrkðkαÞ;rkðkβÞÞ is calculated the same
way as ρðkα;kβÞ, with the difference that not degrees but ranks
of degrees are used, i.e., the node with largest degree has rank
1, the second largest has rank 2, etc. Nodes with the same degree
have the same rank; the difference to the subsequent rank is the
number of nodes which shared the previous rank. For example if
there are three nodes with degree 45 and rank 10, nodes with
degree 44 have rank 13.

Relations between network–network measures. Correlating net-
work-network measures reveals a strong relation between link
overlap and degree correlation (ρ ¼ 0.88, p-value: 10−5), see
SI Fig. 1 (a). Pairs of networks of the same connotation have
a higher overlap than oppositely connotated pairs; a similar ten-
dency for degree correlation is apparent. A correlation between

link overlap and degree rank correlation is also present, however
with lower significance (ρ ¼ 0.63, p-value: 0.01), see SI Fig. 1 (b).
We mark pairs including a communication network as neutral,
since messages may involve both positively or negatively conno-
tated content.

Network-network interactions over time. To assess to what extent
network-network properties of link overlap, degree correlation,
and degree rank correlation change over time, we show these
properties at days 150, 300, and 445 for all pairs of networks
in SI Fig. 2. Here, accumulated networks, i.e., all except friend-
ship and enmity networks, are accumulated over days 1 to 150,
over days 1 to 300, and over days 1 to 445, respectively. Friendship
and enmity networks are taken at these times. The number of
players involved in the envelope network (i.e., in any relation)
changes from 9,862 to 15,103 to 18,819 in these points in time,
respectively. Changes are relatively small, except for degree
correlations of pairs including bounty networks. Overlap values
generally tend to decrease slightly over time.

Social balance and sparse networks. To analyze the multiplexity of
large-scale networks and to draw conclusions from our observa-
tions, we need to address an issue that is usually obsolete for ex-
periments on small social systems. When considering different
types of interactions between students of a class or diplomatic
positions between countries, it is reasonable to assume that all
agents in the network are aware of each other’s existence. In
large-scale social networks, in contrast, the absence of any type
of link between two nodes may either correspond to the existence
of an indifferent/neutral interaction, or to the absence of any past
and present contact between both agents. The fact that agents
only know a fraction of the total set of agents is typical of sparse
networks and originates from the finite capacities of its nodes,
i.e., agents have limited time and resources, therefore can explore
a small fraction of the available spatial and cognitive space. In the
Pardus networks this finiteness is affirmed by the observation that
out-degrees of friendship and enmity networks have an upper
bound, limited by the Dunbar number of ≈150 (1), presumed
as a natural limit for social ties humans are able to sustain (7).
The average degree k̄α is well below Oð100Þ, for all types α.

A proper null model.The aspect of a null model becomes important
when assessing the relevance of topological structures in a net-
work. A standard procedure consists in comparing this observa-
tion against similar observations in null models, i.e., randomized
versions of the original network under adequate constraints (8).
In order to test predictions of structural balance theory, we focus
on friendship and enmity relations, and leave aside other types of
interactions. In a first step, we remove the negligible number of
ambiguous links (links between players where one marks the
other as friend but is marked back as enemy). Our strategy is
now to compare the numbers NΔi

of triads with i positive links
with the expected numbers Nrand

Δi
of triads in a null model. A stan-

dard choice for a null model consists of random graphs with fixed
degree sequences. It has been applied for each network sepa-
rately in Table 1, where we observe that friendship and enmity
networks are both more transitive than a random graph. How-
ever, this choice is not appropriate to test the arrangement of
positive and negative links on the set of existing relations between
agents—a reshuffling of topology by keeping degrees fixed would
for example considerably change the number of triads which we
want to keep fixed. For this reason we define a null model by
keeping the topology fixed and by randomly assigning the Lþ
plus-signs and L− minus-signs on the existing links, where Lþ
(L−) are the original numbers of friendship (enmity) links respec-
tively. Nrand

Δ is measured by averaging over 1000 realizations of
the null model. Moreover, the deviation of the data from ran-
domness is evaluated by the so-called z-score:

Szell et al. www.pnas.org/cgi/doi/10.1073/pnas.1004008107 2 of 5

http://www.pnas.org/cgi/doi/10.1073/pnas.1004008107


zi ¼
NΔi

−Nrand
Δi

σΔi

; [2]

where σΔi
is the standard deviation of the number of triads Δi.

Given the ratio p≔ Lþ
LþþL−

of positive to all links in a signed
network, the expected ratio of triad types in the sign-shuffled null
model is, following straightforward combinatorial arguments, p3,
3ð1 − pÞp2, 3ð1 − pÞ2p, and ð1 − pÞ3 for triad types +++, ++−,
+−−, −−−, respectively. These expressions were used to
create Fig. 5 (center) in the main text.

Dynamics of signed triadic structures and network growth. By mea-
suring all day-to-day transitions from wedges (triads with two
links, with the possible forms ++, +−, and −−) to the other
triadic structures (+++, ++−, +−−,−−−, ++, +−,−−,
+, −, and the empty triad) we shed light upon the mechanisms
which lead to the observed significant social balance discussed in
the main text. We measure the following possible transition types:
A wedge stays the same, closes with a positive/negative link (with
the original links unchanged), has one or both links removed, or
has the sign of one or both links switched. SI Fig. 3 shows the daily
transition probabilities, normalized by the total number of
wedges of the corresponding type on that day. Due to lack of not-
ability the transition type of switching links (with a probability less
than a tenth of that of link-removal, on average) was not included
in SI Fig. 3.

Wedges of type ++ close preferentially with a positive link,
see green line in SI Fig. 3 (a), wedges of type +− with a negative
link, see blue line in SI Fig. 3 (b). These probabilities are decreas-
ing over time and seem to eventually level out. There is no clear
sign preference in the closure of type −− wedges (red lines).
These observations consistently explain the social balance results
shown in Fig. 4 and Fig. 5 in the main text. Further, note that−−
wedges are much more likely to remain unchanged than other
types of wedges, see SI Fig. 3 (d). We conclude that the mechan-
ism of triadic closure (9) has a much weaker influence as a driving
force in purely negative tie networks than in positive tie or signed
networks.

SI Fig. 4 depicts the total number of wedges of each type, for
every day. Note how the majority of wedges is of type −−,
although there are more positive than negative links, see Table 1
(main text). Also the growth rate for −− wedges is higher than
for the other two types (until about day 350, where the number of
−− wedges starts to equilibrate). This seemingly paradoxical cir-
cumstance is consistent with the marked differences in clustering
coefficients, see Table 1 (main text). It is further consistent with
the observation that a number of aggressive players frequently
offend many others and consequently get marked as enemy by
unconnected players (1). Since the clustering coefficient mea-
sures the ‘closedness’ of triads, a high clustering coefficient in
friendship networks implies a relatively small number of ++
wedges, whereas a low clustering coefficient in enmity networks
implies a relatively high number of −− wedges.

For assessing to what extent network growth is driven by the
closure of triads, we define the closure ratio as the number of
newly added links which close at least one wedge, divided by
the number of all new links, over a certain time-window during
the evolution of the network. The closure ratio lies between 0 and
1; the higher it is the more new links close a wedge. In practice,
the closure ratio is strictly smaller than 1, since a number of cases
unavoidably do not allow for the possibility of new links closing a
wedge (for example the first and second links which are added
into an empty network because no wedges exist at that stage).
The measured time-evolution of daily closure ratios in the
friend-enmity multiplex-network is depicted in SI Fig. 5 (a). Over
time the ratio slightly increases and seems to level out at around
0.5 for both positive and negative links. We conclude that half of
all links added close at least one wedge, while the other half does

not close one. Thus, a model for network growth using only wedge
transition rates shown in SI Fig. 3 could only account for the
dynamics of about half of the added links.

Another quantity important for modeling social network
dynamics is the number of removed links per time. We define
the link churn ch as the number of removed links divided by
the number of new links, over a given time-window. The churn
is nonnegative; there are 3 possible cases: i) Growth
(0 ≤ ch < 1): More new than removed links, ii) Equilibrium
(ch ¼ 1): The same number of new as removed links, iii) Shrink-
age (ch > 1): More removed than new links. The higher ch, the
more links are removed relative to the number of added links.
Note that in the majority of classic network growth models, such
as preferential attachment (10), no removal of links is assumed
(ch ¼ 0) and the effect of churn is ignored. The measured time-
evolution of link churns over time windows of 14 days in the
friend/enmity network is depicted in SI Fig. 5 (b). Over time
ch increases and fluctuates around ch ¼ 0.7 for both positive
and negative links (taken over days 200 to 445, ch ¼ 0.66 for
friend links and ch ¼ 0.72 for enemy links). Therefore, at the
end for every three new links about two links are removed. Since
the number of links removed from wedges is much smaller than
links added to close wedges, we conclude that many links are re-
moved from triadic structures other than wedges. Again, a model
for network growth using only the transition rates shown in SI
Fig. 3 would only account partially for link-removal dynamics.

A network evolution model of signed triadic closure.Using the mea-
sured daily transition rates above we define a transition matrix

MSTC ¼ P
þþ → þþþ þþ → þþ� þþ → þþ
þ� → þ�þ þ� → þ�� þ� → þ�
�� → ��þ �� → ��� �� → ��

0
@

1
A

¼
0.000212 0.000029 0.999759
0.000025 0.000279 0.999696
0.000040 0.000036 0.999924

0
B@

1
CA;

where the entries are the probabilities of a wedge of given type to
another triadic structure. Rows 1, 2, and 3 of MSTC distinguish
between wedge types ++, +−, and −−, respectively; columns
1, 2 and 3 distinguish between probabilities for closure with either
a positive or a negative link, or the probability of no change,
respectively. The constant probabilities of columns 1 and 2 are
determined by averaging the corresponding evolving probabilities
over the days 100 to 445 (this time-window was chosen due to a
relatively decreased level of fluctuations in transition probabil-
ities, see SI Fig. 3). The third column is one minus the sum of
values in column 1 and 2, since we neglect link-removals and
sign-switches. With these parameters we design the following
network evolution model, to understand Signed Triadic Closure
(STC):

• At time t pick wedge i at random (random sequential update)
• Determine the type of wedge i and close (or do not close) it

according to the relevant entry in MSTC
• Pick next wedge until all wedges are updated
• Continue with time step tþ 1

As initial condition we take the observed friendship and enmity
multiplex-network at day 100. Simulating this process leads to the
results shown in Fig. 5 (right) in the main text, reproducing the
ratio of triads in the data considerably better than the null model.

For the purpose of simplicity, the STC model ignores three
possibly important aspects:

• It does not take into account links added by means other than
triadic closure. As we have shown above, the closure ratio ≈0.5,
i.e., only half of all new links are added in the process of triadic
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closure. For the other half of new links, one could for example
take into account the mechanism of preferential attachment
(10), for which exponents were reported in (1).

• The model does not take into account the removal of links.
Because removal happens in a relatively high frequency
(ch ≈ 0.7), a possible extension of the model could involve
the measurement and implementation of decay rates, i.e., of

transition rates from complete signed triads to wedges (or
other triadic structures with a smaller number of links). We
suspect that balanced triads are more stable than unbalanced
triads.

• The model could be expanded to incorporate directed links
and in/out-degree distributions, clustering coefficients, assorta-
tivity, etc.
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Fig. S2. Evolving network-network properties (a) link overlap, (b) degree correlation, (c) degree rank correlation, on the days 150, 300, and 445, for all pairs of
networks, with the notations E for Enmity, F for Friendship, A for Attack, T for Trade, C for Communication and B for Bounty. Changes are relatively small,
except for degree correlations in the E:B, A:B, C:B, and F:B interactions.
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Fig. S3. Measured day-to-day transition probabilities from wedges to staying the same or to other triadic structures, in the multiplex-network consisting of
friend and enmity relations. For visual clarity amoving average filter with a time-window of 14 days was applied. (a) Probabilities of wedges being closed with a
positive link. (b) Probability of a wedge being closed with a negative link. (c) Probability of a wedge having one or both links removed. (d) Probability of a
wedge staying unchanged. Note how + + wedges have a clear preference of being closed by a positive link, while +−wedges have a clear preference of being
closed by a negative link. Wedges of type −− have no sign preference for closure and are more likely to remain unchanged than other wedge types.
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Fig. S5. (a) Closure ratio, defined as the number of new links which closed at least one wedge divided by all new links, here for each day. For visual clarity a
moving average filter with a time window of 14 days was applied. (b) Link churn ch, defined as the number of links removed divided by the number of links
added, here for each time window of 14 days. Evolutions of these ratios are depicted for positive and negative links, within the multiplex network consisting of
friend and enmity relations.
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