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a b s t r a c t

Quantification of human group-behavior has so far defied an empirical, falsifiable approach. This is due to
tremendous difficulties in data acquisition of social systems. Massive multiplayer online games (MMOG)
provide a fascinating new way of observing hundreds of thousands of simultaneously socially interacting
individuals engaged in virtual economic activities. We have compiled a data set consisting of practically
all actions of all players over a period of 3 years from a MMOG played by 300,000 people. This large-
scale data set of a socio-economic unit contains all social and economic data from a single and coherent
source. Players have to generate a virtual income through economic activities to ‘survive’ and are typi-
cally engaged in a multitude of social activities offered within the game. Our analysis of high-frequency
log files focuses on three types of social networks, and tests a series of social-dynamics hypotheses. In
particular we study the structure and dynamics of friend-, enemy- and communication networks. We
find striking differences in topological structure between positive (friend) and negative (enemy) tie net-
works. All networks confirm the recently observed phenomenon of network densification. We propose
two approximate social laws in communication networks, the first expressing betweenness centrality as
the inverse square of the overlap, the second relating communication strength to the cube of the overlap.
These empirical laws provide strong quantitative evidence for the Weak ties hypothesis of Granovetter.
Further, the analysis of triad significance profiles validates well-established assertions from social balance
theory. We find overrepresentation (underrepresentation) of complete (incomplete) triads in networks
of positive ties, and vice versa for networks of negative ties. Empirical transition probabilities between
triad classes provide evidence for triadic closure with extraordinarily high precision. For the first time we
provide empirical results for large-scale networks of negative social ties. Whenever possible we compare
our findings with data from non-virtual human groups and provide further evidence that online game
communities serve as a valid model for a wide class of human societies. With this setup we demonstrate
the feasibility for establishing a ‘socio-economic laboratory’ which allows to operate at levels of precision
approaching those of the natural sciences.

All data used in this study is fully anonymized; the authors have the written consent to publish from
the legal department of the Medical University of Vienna.
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1. Introduction

Quantification of collective human behavior or social dynam-
ics poses a unique, century old challenge. It is remarkable to
some extent that mankind knows more about dynamics of sub-
atomic particles than it knows about the dynamics of human
groups. The reason for this situation is that the establishment of
a fully experimental and falsifiable social science of group dynam-
ics is tremendously complicated by two factors: First, unlike many
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problems in the natural sciences, dynamics of societies consti-
tute a complex system, characterized by strong and long-range
interactions, which are in general not treatable by traditional
mathematical methods and physical concepts. Second, data is of
comparably poor availability and quality (Watts, 2007; Lazer et
al., 2009). Evidently it is much harder to obtain data from social
systems than from repeatable experiments on (non-complex)
physical systems. Despite these severe problems, it is nevertheless
paramount to arrive at a better understanding of collective human
behavior. Only recently it became most evident in the context
of economics and finance, which costs are associated to miscon-
ceptions of human collective behavior. If the dynamics behind
collective behavior are going to remain as poorly understood as
they are today, without being able to generate statements with
predictive value, any attempts of managing crises will turn out not
a whit better than illusionary.

0378-8733/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Many complex systems cannot be understood without their sur-
roundings, contexts or boundaries, together with the interactions
between these boundaries and the system itself. This is obviously
necessary for measuring large-scale dynamics of human groups.
Regarding data acquisition it is therefore essential not only to
record decisions of individual humans but also the simultaneous
state of their surroundings. Further, in any data-driven science the
observed system should not be significantly perturbed through the
act of measurement. In social science experiments subjects usu-
ally are fully aware of being observed—a fact that might strongly
influence their behavior. Finally, data acquisition in the social
sciences becomes especially tiresome on group levels, see, e.g.
Newcomb (1961). Traditional methods of social science such as
interviews and questionnaires do not only need a lot of time and
resources to deliver statistically meaningful assertions, but may
introduce well-known biases (Carrington et al., 2005). To many
it might seem clear that social sciences can not overcome these
problems, and that therefore social sciences would always remain
on a lower quantitative and qualitative level than the natural sci-
ences.

Both issues, the availability of data, and the possibility to take
simultaneous measurements on subjects and their surroundings,
might appear in a radically more positive light when looking at mas-
sive multiplayer online games (MMOGs) (Castronova, 2005). Such
computer games not only allow to conduct complete measurements
of socially interacting humans, they also provide data at rates com-
parable to physical experiments. Remarkably, one of the largest
collective human activities on the planet is the playing of online
games. Currently more than a hundred million people worldwide
play MMOGs—the well-known game World of Warcraft alone
has more than 10 million subscribers as of today. MMOGs exhibit
such an enormous success due to offering their players possibil-
ities to experience alternative or second lifes, not only providing
(virtual) economic opportunities, but also a huge variety of possi-
ble social interactions among players. Many MMOGs provide rich
virtual environments facilitating socialization and interactions on
group levels (Yee, 2006a,b; Castronova, 2005). Motivation of play-
ers to participate in MMOGs are highly heterogeneous, ranging
from establishing friendships, gain of respect and status within the
virtual society, to the fun of destroying the hard work of other play-
ers. Besides economical and social interactions, modern MMOGs
also offer a component of exploration, e.g. players can explore their
‘physical’ environment, such as specific features of their universe,
‘biological’ details of space-monsters, etc., and share their findings
within ‘specialist’ communities.

From a scientific point of view online games provide a tool for
understanding collective human phenomena and social dynamics
on an entirely different scale (Bainbridge, 2007; Castronova, 2006).
In these games all information about all actions taken by all players
can be easily recorded and stored in log-files at practically no cost.
This quantity of data has been unthinkable in the traditional social
sciences where sample sizes often do not exceed several dozens
of questionnaires, school classes or students in behavioral experi-
ments. In MMOGs on the other hand, the number of subjects can
reach several hundred thousands, with millions of recorded actions.
These actions of individual players are known in conjunction with
their surroundings, i.e. the circumstances under which particular
actions or decisions were taken. This offers the unique opportunity
to study a complex social system: conditions under which indi-
viduals take decisions can in principle be controlled, the specific
outcomes of decisions can be measured. In this respect social sci-
ence is on the verge of becoming a fully experimental science (Lazer
et al., 2009) which should increasingly become capable of making
a great number of repeatable and eventually falsifiable statements
about collective human behavior, both in a social and economical
context.

Another advantage over traditional ways of data acquisition in
the social sciences is that players of MMOGs do not consciously
notice the measurement process.1 These ‘social experiments’ prac-
tically do not perturb or influence the sample. Moreover MMOGs
not only open ways to explore sociological questions, but – if eco-
nomic aspects are part of the game (as it is in many MMOGs) –
also to study economical behavior of groups. Here again econom-
ical actions and decisions can be monitored for a huge number of
individual players within their social and economical contexts. This
means that MMOGs offer a natural environment to conduct behav-
ioral economics experiments, which have been of great interest in
numerous small-scale surveys, see, e.g. Gächter and Fehr (1999)
and Henrich et al. (2005). It becomes possible to study the socio-
economic unit of large online game societies.

In the past years we have recorded practically all actions of all
players taken in the self-developed, proprietary MMOG Pardus
which is online since 2004. Pardus is an open-ended game with a
worldwide player base of more than 300,000 people. Players reside
and act within a virtual, persistent futuristic universe and make up
their own goals. Most players invent and develop their virtual social
lifes without constraints by the game setup. The game’s environ-
mental topology is given but can be manipulated by the players to
some extent. Players self-organize within groups and subgroups,
claim territories, decide to go to war, etc., completely on their own
accounts. Players typically participate in the game for several weeks
to several years.

Players of Pardus characteristically engage in various economic
activities to increase their wealth (non-convertible game money):
There are numerous possibilities for jobs, such as mining and pro-
cessing basic resources from the environment, trade, production,
assembly and consumption of commodities, etc. Economic life is
embedded in a production tree which provides a basic framework
for player-created industries. Trade occurs following simple ‘rules’
within dynamic and demand-oriented virtual markets constituted
by groups of players. Social life within Pardus is based on means
of communication with fellow players in various forms, such as
chat, forum, private messages, which allow the establishment of
e.g. friendships or hostile relations. There are a number of ways
to publicly display one’s ‘status’ within the virtual society: Pur-
chase of expensive status symbols, such as space ships, earning of
medals of honor for war efforts or for defeating outlaws, etc. These
possibilities are not only well used, but constitute an important
psychological driving force for many players.

Given the complete data set from the Pardus game, here we
follow two major directions of research.

1.1. Network analysis

It is possible to directly access the dynamics of several types
of social networks such as dynamics of friend networks, networks
of enemies, or communication networks. Especially the latter offer
a fantastic way to directly relate findings in the game with real-
world communication networks, such as a data set of cell phone
calls which has been recently analyzed from a network perspec-
tive (Onnela et al., 2007; Lambiotte et al., 2008). While there exists
some insight into real-world friend networks in the literature, e.g.
of the Facebook community (Golder et al., 2007), there is practi-
cally no knowledge of topology and dynamics of enemy networks
(Labianca and Brass, 2006). Since the time resolution of our data
is accurate to 1 s, it becomes possible to study time courses of
global network properties. This way it can be understood if and how
communities show aging effects, such as densification, i.e. shrink-

1 Players are informed that data is logged for scientific purposes and give their
consent, usually prior to their participation in the game.
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ing diameters and growing average degrees. This phenomenon has
been observed in societies and online communities (Leskovec et al.,
2007, 2008), as well as in the evolution of scientific fields and cities
(Bettencourt et al., 2007, 2008). The vast majority of social net-
work studies analyze single or at best small numbers of network
snapshots. Important exceptions include time resolved studies of
an internet dating community (Holme et al., 2004), the analysis of
a university email network (Kossinets and Watts, 2006), of the web
of scientific coauthorships (Ravasz, 2004; Newman, 2001, 2004), as
well as several large-scale networks of various types (Leskovec et
al., 2007).

Network growth and re-linking processes can be directly
studied and compared to well-known models, such as e.g. the pref-
erential attachment model (Barabási and Albert, 1999) or static
relinking models (Thurner et al., 2007). Preferential attachment
dynamics of real-world networks have been verified in a few recent
studies (Csárdi et al., 2007; Leskovec et al., 2008; Jeong et al., 2003).

1.2. Testing traditional social-dynamics hypotheses

The Pardus data allows for direct empirical testing of long-
standing hypotheses on social network dynamics, such as the
Hypothesis of triadic closure (Rapoport, 1953; Granovetter, 1973),
the Weak ties hypothesis (Granovetter, 1973), or the Hypothesis of
social balance (Harary, 1953; Doreian and Mrvar, 1996).

For quantification purposes we employ network measures such
as betweenness centrality (Freeman, 1977) and overlap which mea-
sures how often a given pair of nodes has links to other common
nodes (Onnela et al., 2007). To our knowledge, no longitudinal mea-
surements of large-scale signed networks exist as of today. One
well-known social network study on monks in a monastery can be
found in the classic literature (Sampson, 1968), as well as a modern
long-time survey of social dynamics in classrooms (Jordán, 2009).
These are first attempts of systematic social balance experiments,
however being far from conclusive due to limited data and small
scales (10–100 nodes), and a low number of samples (about ≈ 10
observations). Further, the extent of reciprocity and Triad signifi-
cance profiles (Milo et al., 2004) together with their dynamics can
be directly accessed from the game data. For the quantification of
these concepts we use recent technology developed in the con-
text of motif distributions. To understand microscopic changes in
social network dynamics, transition rates between dyadic and tri-
adic structures can be measured—yielding parameters needed, e.g.
for calibrating agent-based models of social network dynamics, as
e.g. in Antal et al. (2006). So far these transition rates could only
be assumed by model builders and have never been measured in
actual societies.

Further research directions may include economic analysis, e.g.
comparison of the Pardus economy to real economies (Yakovenko,
2009; Dragulescu and Yakovenko, 2001; Chatterjee et al., 2007;
Cont, 2001), focus on co-evolving networks (Biely et al., 2007,
2009), as well as group formation dynamics or gender and country
aspects. In (Szell et al., 2010) multi-relational (multiplex) aspects
of social networks were studied. It was shown that relations driven
by aggression lead to markedly different systemic characteristics
than relations of non-aggressive nature. Network–network inter-
actions reveal a non-trivial structure of this multi-dimensionality,
and how humans play very different roles in different relational
networks.

It is not obvious a priori that a population of online players
is a representative sample of real-world societies (Williams et
al., 2009). However, several recent studies are providing evidence
that human behavior on a collective level is remarkably robust,
meaning that statistical differences of real-world communities and
game-societies are often marginal (Johnson et al., 2009; Jiang et al.,
2009).

The paper is organized as follows. In Section 2 we present the
game, describe the sample of players and explain their modes of
communication. We introduce the three types of social networks
studied. Section 3 contains the network measures used in our anal-
yses. Results are presented in Section 4 and are discussed in Section
5. Finally we conclude in Section 6.

2. The game

2.1. Overview

Pardus (http://www.pardus.at) is a browser-based MMOG in a
science-fiction setting, open to the public and played since Septem-
ber 2004. A browser-based MMOG is characterized by a substantial
number of users playing together in the same virtual environment
connected by an internet browser. For a detailed categorization of
online games see Bartle (2004) and Castronova (2005).

In Pardus every player owns an account with one charac-
ter per game universe; players are forbidden to operate multiple
accounts. A character is a pilot owning a spacecraft with a certain
cargo capacity, roaming the virtual universe trading commodities,
socializing, and much more, ‘to gain wealth and fame in space’
(http://www.pardus.at/index.php?section=about). The main com-
ponent of Pardus consists of trade simulation with a society of
players heavily driven by social factors such as friendship, coopera-
tion or competition. There is no explicit ‘winning’ in Pardus as there
is no inherent set of goals nor allowed or forbidden ‘moves’ (with
a few exceptions mainly concerning decent language and behav-
ior towards fellow players). Pardus is a virtual world or synthetic
world with a gameplay based on socializing and role-playing, with
interaction of player characters with others and with non-player
characters as its core elements (Castronova, 2005).

There exist three separate game universes: Orion, Artemis, and
Pegasus. Presently Pardus is actively played by ≈ 14, 000 play-
ers, over 300,000 have registered so far. Orion and Artemis each
inhabit ≈ 6500 active characters, Pegasus with its ≈ 1400 charac-
ters is for paying customers only. We count existing characters who
have mastered the game’s tutorial environment as active (charac-
ters which are inactive for 120 days get deleted automatically, see
Section 2.3). Fig. 1 depicts the evolution of universe populations
for the time range where data is available (see Section 2.2). The
majority plays the game for free, paying members receive Premium
accounts which bestow them with additional features not available
to users with Free account status (such as the possibility of char-
acter creation in the Pegasus game universe). Orion was opened
on September 14th 2004, Artemis and Pegasus 1000 days later, on

Fig. 1. Evolution of number of active characters in the game universes. The large
increase of players in Orion between days ≈ 800 and 1000 is due to ad campaigns
after October 2006. At day 1000 (dotted line) Artemis and Pegasus were opened.
Some thousand players abandoned their Orion characters focusing on their new
Artemis characters. This explains the mirrored development in these two universes
after day 1000.
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Fig. 2. Cumulative distribution of character lifetimes (in days) of all 16,980 char-
acters who existed at least for 1 day but not on the last one. The dotted line marks
day 120. The inset shows the distribution of lifetimes of < 120 days in a double-
logarithmic scale.

June 10th 2007. Between universes it is impossible to move, trade,
or exchange game money. The universes are independent.2

2.2. The data analyzed

Daily database backups recorded at 05:32 GMT3 are available
from 2005-09-09 to 2008-09-01. The day 2005-09-09 is the 360th
after 2004-09-14, i.e. the 360th day after Orion was opened. Back-
ups from the following dates are not available due to unknown
reasons: 2006-03-24 to 2006-04-23, 2006-04-28 to 2006-04-30,
2006-10-24 to 2006-10-26, 2007-03-20, 2007-05-10, 2007-09-21,
2008-02-09, 2008-06-09. Since we have complete data only for
Artemis and Pegasus (with the exception of 3 days), and because
Artemis has more active characters than Pegasus, in this work we
refer only to Artemis data. Results are remarkably robust between
universes. For clarity only weekly data points are shown in all time
evolution plots, except for Figs. 8 and 12.

2.3. Players and census of characters

2.3.1. Age and nationality
In a poll taken in the Pardus forums in the beginning of 2005 the

age of players was assessed. From a total of 255 votes, 5% reported
their age to be less than 15 years, 18% between 15 and 19, 34%
between 20 and 24, 23% between 25 and 29, and 20% are older than
29 years. The distribution of player nationalities can be estimated
by technical means and reads approximately as follows: United
States 40%, United Kingdom 14%, Canada 5%, Austria 4%, Germany
4%, Australia 4%, and other 29%.

2.3.2. Lifetimes of characters
Characters are automatically deleted after an inactivity (not log-

ging in) period of 120 days. Additionally, every player has the option
to delete her account or characters at any time. Rarely, it happens
that accounts get deleted due to breaking of game rules, such as the
operation of multiple accounts. We call all deletions which are not
due to inactivity self-induced. Fig. 2 shows the cumulative distri-
bution of character lifetimes (in days) of all 16,980 characters who

2 This is not entirely correct since some players have openly revealed their identi-
ties, i.e. they have disclosed which characters they are controlling in different game
universes. It is not clear how many attempts have been made to copy existing social
ties between universes. Although it is discouraged, it may happen that e.g. vendettas
between players who are aware of their mutual identities in different universes are
carried out within more than one universe.

3 This time was chosen for the daily backup and maintenance scheduler because
it is the time of lowest player activity.

existed for at least 1 day, but not on the last one. If a character’s life-
time lies before day 120 (dotted line), her deletion could have been
self-induced only. If a character’s lifetime is longer than 120 days,
her deletion was either self-induced or automatic due to inactivity.
These two regimes are evident in the figure: the regime of only self-
induced deletion follows a power-law with exponent � = −0.063.
In the second regime, the distribution is neither a power-law nor
an exponential probably due to the overlay of the two deletion
schemes.

Of all characters 7.6% have a lifetime of 0 days, i.e. they delete
themselves on the first day of their existence. At least 31.4% of
all deletions are self-induced, and ≈ 13% of all characters become
inactive after their first day.

2.3.3. Gender of characters
When signing up for the first time, players have to choose

between a male and female character; this decision is irrevocable.
Depending on gender a male or female avatar (profile-like pic-
ture) of characters is displayed in certain places in the game. In
the Artemis universe, ≈ 90% of all characters are male.

2.4. Structure of the universe

Space in Pardus is two-dimensional. Each game universe is
divided into 400 sectors, each sector consisting of 15 × 15 fields on
average. Fields are the smallest units of space and are displayed
as quadratic images in-game. They form a square grid on which
continuous ship movement is possible by clicking on the desired
destination field within the space chart. This chart is a 7 × 7 fields
cut-out of the universe visible to every player with their current
position located on the central field, see Fig. 3. A sector’s bound-
ary is impenetrable; moving between nearby sectors is possible by
tunneling through field objects called wormholes. A collection of
nearby ≈ 20 sectors is called a cluster. The typical spatial range of
activities of a character is usually confined to one cluster for several
weeks or longer.

2.5. Action points—the unit of time

Every game action carried out by a player (trade, travel, etc.)
costs a certain amount of so-called action points (APs). These points
can not exceed a maximum of 6100 APs per character. For charac-
ters owning less APs than their maximum, every 6 min 24 APs are
automatically regenerated, i.e. 5760 APs per day. Once a player’s
character is out of APs, she has to wait for being able to play on. As
a result the typical Pardus player logs in once a day to spend all
her APs on several activities within a few minutes (for each char-
acter/universe). This makes APs, the game’s unit of time, the most
valuable factor: Those players who use their APs most efficiently
can experience the fastest progress or earn the highest profits.
Social activities such as chatting (see Section 2.7) do not consume
APs. Highly involved players usually spend a lot more real time on
the game’s features of socialization as well as on planning and coor-
dinating their future moves than on actually spending their APs.

2.6. Trade and industry

The currency of game money within Pardus is the so-called
credit. This money is not convertible to real money. Every player
starts her life with 5000 credits. Since most assets needed for
making progress – such as ships, ship equipment, buildings – are
traded in credits, it is of basic interest to earn money during the
game (the richest players currently possess hundreds of millions
of credits). There exist a number of possibilities to do this, usu-
ally through participation in the economy. Players find themselves
strongly encouraged to take part in the struggles of economic life, as
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Fig. 3. Space chart. A cut-out of 7 × 7 fields of the universe (grid lines) visible to every player on his navigation screen; the current position is the central field. By clicking on
another field, the ship moves to that location.

known from the real world: collaboration, competition, carteliza-
tion, fraud, etc. We will analyze the Pardus economy in detail in a
separate work.

2.7. Social interaction

There are three ways for players to communicate inside the
game, facilitating social activity. Players may use these facilities
independently from game-mechanic states (such as their ship’s
location within the universe, their wealth, etc.):

1. Chat:Pardus offers several built-in chat channels per universe
where players can simultaneously communicate with many
others. Chat entries scroll up and disappear; thus the chat is
well-suited only for temporary talks.

2. Forum: In the forum, messages, called posts, can consist of several
lines and stay for a long time. This enables more thorough dis-
cussions than in chat. Posts are organized within threads which
correspond to a topic. There are universe-specific subforums as
well as global subforums which can be accessed from all uni-
verses.

3. Private message: Within a universe it is possible to send private
messages (PMs) to any other player; this action and the PM’s
content is only seen by sender and receiver—a system similar to
email. When a PM is sent the receiver gets immediately notified
in a status bar. PMs always have exactly one recipient. Presently
a daily total of ≈ 10, 000 PMs are exchanged within Pardus.

2.8. Friends and enemies

For a small amount of APs, players can mark others as friend or
enemy. This can be done for any reason. The marked characters are

added to the markers personal friends or enemies list. Additionally,
every player has a personal friend of and enemy of list, displaying all
players who have marked them as friend or enemy, respectively.
When being marked or unmarked as friend or enemy the affected
player immediately receives an informatory system message. It is
only possible to mark someone either as friend or as enemy, but
not both.

We stress that friend/enemy lists and friend of/enemy of lists
are completely private, meaning that no one except the marking and
marked players have information about ties between them. It is not
possible to see second degree neighbors (e.g. friends of friends) or
the number of ties another player has.4 Note that this is in contrast
to many online social networking services such as Facebook, where
usually second degree neighbors and number of friends are visi-
ble. Thereby Pardus’ system does not introduce potentially strong
biases concerning accumulation of friends (some users may tend to
accumulate friends for the main purpose of increasing their pub-
licly visible number of friends (Golder et al., 2007)). Our data thus
represents a more realistic social situation, in the sense that social
ties are not immediately accessible but need to be found out by e.g.
communication with or careful observation of others.

Besides character names and online status being displayed
on every player’s personal PM contacts page for quick access,
the friends and enemies lists serve game-mechanic purposes:
friends/enemies are automatically or optionally included/excluded

4 On 2008-08-24 the profile feature of the game was extended, allowing players
with Premium accounts to publicly display their numbers of friends or enemies.
Since this feature was introduced at the very end of our last measured data (2008-
09-01) and only a negligible proportion of players are making use of it, it is irrelevant
here.
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Fig. 4. (a) Accumulated PM communications over all 445 days between 78 randomly selected individuals who existed on the first and last day. Link shades of light gray
(thin), gray, and black (thick) correspond to 1–10, 11–100 and 101–1000 PMs sent, respectively. (b) Friend (solid) and enemy (dashed) relations on day 445 between the
same individuals. See our Youtube channel http://www.youtube.com/user/complexsystemsvienna for animated time evolutions of these networks.

for certain actions. For example, enemies of building owners are
not able to use the services offered in the respective places. Note
that friend and enemy markings need not necessarily denote affec-
tive friendships or enmity, they rather indicate a certain degree of
cooperative or uncooperative stance motivated by affective and/or
cognitive incentives. However, we assume these two motives to
coincide to a great extent, e.g. it seems highly unlikely that someone
marked as enemy/friend due to rational considerations at the same
time constitutes the affective opposite of friend/enemy within the
game (and vice versa). PMs as well as friend and enemy relations
can be displayed as networks, Fig. 4, see also Section 3.2.

2.9. Universe-specific characteristics

Orion has the longest history but has some missing data at its
beginning (see Section 2.2). Orion has converged to social struc-
tures and ties which are relatively constant over time, as seen in a
number of measures (not shown). In contrast, Artemis and Pegasus
can be observed from their start on, and measuring the evolution

of social networks from the time of their birth is possible. Here we
do not face the problem of the ‘missing past’ (Leskovec et al., 2007).
Further, since character creation in Orion and Artemis is free but
not so in Pegasus, the former universes display considerably higher
fluctuations in player numbers and activity rates than the latter.

3. Networks

3.1. Definitions

3.1.1. Graph
In mathematical terms, networks are described by graphs

(Wasserman and Faust, 1994; Dorogovtsev and Mendes, 2003). An
undirected graph G = (N,L) is defined as a pair of sets, the node set
N containing all nodes ni and the link set L containing unordered
pairs lij:={ni, nj} denoting those nodes which are connected by an
undirected link (edge). A directed graph (digraph) has a link set L
which contains ordered pairs lij:=(ni, nj) marking nodes which are
connected by a directed link (arc) going from ni to nj . The expres-
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sions N, L denote cardinalities of the respective sets. A graph is called
complete if connections between all pairs of nodes exist.

3.1.2. Symmetrization
The symmetrization or reflexive closure of a digraph G = (N,L)

is constructed as follows: Start with G∗ = (N,L∗), where L∗ is an
empty link set, and for all pairs of nodes ni and nj add the undirected
link lij to L∗ if the directed link lij ∈L or if lji ∈L.

3.1.3. Weighted graph
In unweighted graphs all links are treated equally. A weighted

graph is a generalization in which the weight wij of a link lij may
take any non-zero real value.

3.1.4. Dyad
A dyad is a (sub)graph consisting of two nodes. A directed dyad

can be a null dyad (no links), asymmetric (one link, going in one
direction), or mutual (two links, one going in one direction and the
other going in the opposite one).

3.1.5. Signed graph
A signed digraph is a pair (G, �), where G = (N,L) is a digraph and

� : L → {−1, +1} is a sign function assigning each directed link a
binary value, e.g. in the context of social networks denoting positive
or negative relationship (Doreian and Mrvar, 1996). We write sij

short for �(lij), and set sij:=0 when lij does not exist.
Every signed digraph has a valency matrix V with entries vij

defined as (Harary et al., 1965):

vij = o if sij = sji = 0
vij = p if sij + sji > 0
vij = n if sij + sji < 0
vij = a otherwise

(1)

These entries correspond to null (o) dyads, to dyads with only
positive ties (p), to dyads with only negative ties (n), and to dyads
with one positive and one negative tie (a for ambivalent relation-
ship), respectively.

3.1.6. Degree
In an undirected graph the degree ki of a node ni is the number

of links connecting to it. All ki nodes which are directly linked to
ni are called (nearest) neighbors of ni. A node with degree 0 has no
neighbors and is called isolated. We denote the average degree of
all nodes in a network by k̄. In a directed graph the in-degree kin

i
of

a node ni is the number of its incoming links, the out-degree kout
i

the number of its outgoing links. We denote the average degree of
all nearest neighbors of a node ni by knn

i
. We denote the average

degree of all nearest neighbors of all nodes as a function of degree
k by knn(k).

3.1.7. Geodesic
In an undirected graph, the geodesic or shortest path gij of two

nodes ni and nj is the smallest number of links one needs to get from
ni to nj . If a graph is disconnected, i.e. there exist at least two non-
empty sets of non-connected nodes (called components), geodesics
between all nodes of different components are set to ∞. The aver-
age geodesic of a random graph is ḡr ≈ ln N/ ln k̄ (Dorogovtsev and
Mendes, 2003).

3.1.8. Clustering coefficient
The clustering coefficient Ci of node ni in an undirected graph is

the ratio between the number yi of links between its ki neighbors
and the number of all possible links ki(ki − 1)/2 between them,

Ci:=
2yi

ki(ki − 1)
. (2)

The network’s clustering coefficient C is the average over all
clustering coefficients, C = (1/N)

∑
iCi. A random graph’s cluster-

ing coefficient Cr is given by Cr = k̄/N (Dorogovtsev and Mendes,
2003).

3.1.9. Efficiency
Global efficiency of an unweighted network G with N nodes is

defined as

Eglob(G):= 2
N(N − 1)

∑
i /= j ∈ {1,...,N}

g−1
ij

. (3)

Global efficiency Eglob can be thought of as a measure how effi-
ciently information is exchanged over a network, given that all
nodes are communicating with all other nodes concurrently. Local
efficiency Eloc, as a measure of a system’s fault tolerance is defined
as

Eloc(G):= 1
N

∑
i ∈ {1,...,N}

Eglob(Gi), (4)

where Gi is the graph of all neighbors of node ni (not containing ni).
Both values Eglob and Eloc are in the interval [0, 1]. Note that global
efficiency is a reasonable approximation for the inverse geodesic in
unweighted graphs; local efficiency is a good approximation for the
clustering coefficient when most local networks Gi are not sparse
(Latora and Marchiori, 2001).

3.1.10. Reciprocity
Reciprocity measures the tendency of individuals to reciprocate

connections, i.e. the creation of mutual instead of asymmetric dyads
(Wasserman and Faust, 1994). Following Holme et al. (2004), a
naive reciprocity index can be defined by

R:= L

L∗ − 1, (5)

where L∗ is the number of undirected links in the reflexive clo-
sure of the digraph.5 Values of R = 0 and R = 1 stand for no mutual
dyads and mutual dyads only, respectively. Reciprocity may also be
quantified by defining the fraction

r∗:= L↔

L
, (6)

where L↔ ≡ 2(L − L∗) counts the number of directed links in all
mutual dyads of the digraph. Due to conceptual problems with r∗,
Garlaschelli and Loffredo (2004), we use the following reciprocity
index

�:= r∗ − ā

1 − ā
∈ [�min, 1], (7)

with ā:=L/N(N − 1) measuring the ratio of observed to possi-
ble directed links, and �min:= − (ā/1 − ā) ∈ [−1, 0] for ā ≤ 1/2 (the
expression �min makes sense for ā ≤ 1/2. Otherwise it is not pos-
sible to have L↔ = 0). The index � allows to distinguish between
reciprocal (� > 0), areciprocal (� = 0) and antireciprocal (� < 0) net-
works. Further, � enables a clear ordering of networks independent
of link density which is not possible with r∗ (Garlaschelli and
Loffredo, 2004).

5 The factor 2 of Eq. (1) in (Holme et al., 2004) is dropped since we identify pairs
of directed links of mutual dyads with single undirected links in the construction of
the reflexive closure.
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3.1.11. Assortativity
Assortative mixing coefficients are the Pearson correlation coef-

ficients of the degrees at either ends of a link (Newman, 2002):

r = ktokfrom − ktokfrom√
k2

to − kto
2
√

k2
from − kfrom

2
∈ [−1, 1]. (8)

Bars denote averages, kto and kfrom index the (in-, out- or
undirected) degrees of nodes at the beginning and end of links,
respectively. Following Holme et al. (2004) we measure assorta-
tivity rundir in the reflexive closures as well as coefficients for all
four combinations of in- and out degrees in the directed networks:
rinin, rinout, routin, routout. A positive degree–degree correlation coef-
ficient indicates assortativity, i.e. the tendency of nodes with high
(low) degrees connecting to nodes with high (low) degrees, a
negative correlation means disassortativity, i.e. the tendency of
nodes with high (low) degrees connecting to nodes with low (high)
degrees.

3.1.12. Bridge
A bridge is a link which, when removed, increases the amount

of disconnected components in the graph by one (Wasserman and
Faust, 1994). A link is a local bridge of degree i if its removal causes
its endpoints to have geodesic i (Granovetter, 1973).

3.1.13. Overlap
Overlap of two neighboring nodes measures the amount of

neighbors common to both of them. We adopt the definition used
in Onnela et al. (2007),

Oij:=
mij

(ki − 1) + (kj − 1) − mij
∈ [0, 1], (9)

where mij is the number of neighbors common to both nodes ni

and nj . A value of Oij = 0(1) corresponds to an empty (identical)
common neighborhood of nodes ni and nj .

3.1.14. Betweenness
Link betweenness centrality, short link betweenness or load, is

defined for an undirected link lij by

bij:=
∑
ne ∈ V

∑
nf ∈ V\{ne}

�ef (lij)
�ef

, (10)

where �ef (lij) is the number of geodesics between ne and nf that
contain lij , and �ef is the total amount of geodesics between ne and
nf (Onnela et al., 2007). Betweenness can be viewed as a measure
of traffic if e.g. all pairs of nodes exchange information at the same
rate (Dorogovtsev and Mendes, 2003).

3.1.15. Largest connected component
In graphs with infinitely many nodes one observes the emer-

gence of a giant component when crossing a percolation threshold
(Dorogovtsev and Mendes, 2003). The emerging giant component is
the only component holding infinitely many nodes. In finite graphs,
we call the component having the highest number of nodes largest
connected component. We denote the fraction of nodes being in the
largest connected component by �.

3.1.16. Triad
A triad is a (sub)graph consisting of three nodes. In a digraph

there exist 16 isomorphism classes of triads (Harary et al., 1965).
We adopt the notation of Milo et al. (2002) for the 13 con-
nected classes and label the unconnected ones by a, b and c,

Fig. 5. The 16 isomorphism classes of triads and their ids.

see Fig. 5. Within the group of connected triad classes, seven are
complete.6

3.1.17. Triad significance profile
The triad significance profile (TSP) is the vector of statistical

significances of each connected triad class compared to random
networks drawn from the U(X∗+, X+∗, M∗) distribution, i.e. of ran-
dom networks having identical in/out degrees and equally likely
numbers of mutual dyads for each node (Roberts, 2000; Milo et al.,
2002). Statistical significance of a triad class i is measured by the Z
score

Zi = (Nreal
i

− N̄rand
i

)

std(Nrand
i

)
, (11)

where Nreal
i

is the frequency of occurrence of the triad class in the
considered network, and N̄rand

i
and std(Nrand

i
) are the average fre-

quency of occurrence and the standard deviation in an ensemble
of random networks drawn from U(X∗+, X+∗, M∗). The TSP is the
normalized vector of all 13 Z scores,

TSPi = Zi

(
∑13

i=1Z2
i

)
1/2

(12)

Note that the TSP emphasizes the relative significances of triad
classes, constituting an appropriate comparison parameter for net-
works of arbitrary sizes (Milo et al., 2002).

3.2. Network extraction

We represent all measured networks as digraphs with nodes
representing characters. Note that we do not consider iso-
lated nodes, i.e. characters having no PM communication or

6 We write connected short for weakly connected, i.e. every two nodes are joined
by a semipath (Harary et al., 1965). We write completeness short for completeness
of the reflexive closure, i.e. a directed triad is complete if it contains no null dyads,
it is incomplete otherwise.
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friend/enemy relations. In the following we use ‘link’ short for
‘directed link’.

3.2.1. Private messages—communication networks
The first set of networks is extracted by considering all PM

communications on a weekly timescale. Within the timeframes
[d − 6, d] for all days d > 6 all PMs between all characters (who
exist over these timeframes) were used to define the PM net-
work at day d: a weighted link pointing from node ni to node nj

is placed if character i has sent at least one PM to character j within
a given week. Weights correspond to the total number of PMs sent
within this week. Fig. 4(a) illustrates a subgraph of PM networks
of accumulated PM communications over all 445 days between 78
randomly selected characters.

3.2.2. Friends and enemies
Friend and enemy markings constitute the second and third sets

of extracted networks: A link is placed from ni to nj if character i
has marked character j as friend/enemy. Note that friend/enemy
markings exist until they are removed by players (or as long as
the related players exist), while PM networks are constructed
through an accumulating process. Friend and enemy networks are
unweighted, since it is not possible mark friends/enemies more
than once.

Since links of friend and enemy networks never coincide (it is
not possible to mark someone as both friend and enemy), we can
consider the union of friend and enemy networks as signed net-
works. Fig. 4(b) illustrates a subgraph of the friend/enemy network
of day 445. Note the intense cliquishness/reciprocity of friends and
the strong enemy in-hub. We show below that these features are
typical for these networks.

4. Results

In this section we measure social networks as constituted by
different relations between players, focusing on the evolution of
network properties. We provide a round-up of the most important
results in Section 5.

4.1. Testing preferential attachment

The model of preferential attachment (PA) asserts that nodes
which link to a network for the first time tend to attach to nodes
with high degrees, i.e. to ‘popular’ nodes (Barabási and Albert,
1999). In the extracted directed networks of friends (enemies) we
assume this popularity (‘disdain’) being well expressed by the in-
degree. We call characters who get connected to a network for
the first time newcomers. To test whether evolutions of present
networks display a PA bias we measure in-degrees of characters
who are marked by newcomers as friend (enemy). Whenever there
exists a link lij on day d + 1 which has not existed on the previous
day d we say that a (1-day) link event has taken place between ni

and nj on day d; we call ni the source and nj the destination of this
event.

In the classic model of PA it is assumed that the probability P of
a newcomer connecting to an existing node ni with in-degree kin

i
is

P(kin) ∝ (kin)
˛

with ˛ = 1. Fig. 6 shows P(kin) versus kin for friend
and enemy networks; all link events between newcomers and their
destinations have been used from day 200 to 400. Least squares
fits in double-logarithmic scale yield an exponent of ˛ = 0.62 for
friend markings with kin < 30, and ˛ = 0.90 for all enemy mark-
ings. We observe an increased upward bending for players having
in-degrees larger than about 100, i.e. for very popular players. These
findings are fully consistent with other game universes and other
time ranges (not shown).

Fig. 6. Empirical probability P(kin) for newcomers connecting to nodes with in-
degree kin. Data is used between days 200 and 400. The black line depicts slope
˛ = 1 and indicates the linear dependence assumption needed in the PA model.
Thick lines denote least squares fits. Values for enemies are vertically displaced by
a factor 0.1 for better visibility.

4.2. Relations between PM partners

A connection between PM networks and friend/enemy net-
works can be made visible by partitioning all pairs of characters
{ni, nj} into four classes of friend and/or enemy relations, corre-
sponding to the possible valency matrix entries vij of a signed
digraph. These classes o, p, n, a correspond to dyads without
friend/enemy ties (o), dyads with asymmetric or mutual friend
markings (p), dyads with asymmetric or mutual enemy markings
(n), dyads with one friend and one enemy marking (a). We mea-
sure the following: Relations of class a almost never appear. The
majority (> 95%) of PM partners consists of positively related char-
acters (≈ 40% on the last day) and of characters having no friend
or enemy relation (≈ 58% on the last day)—we therefore expect a
much stronger correlation of PM networks with friend networks
than with enemy networks.

4.3. Measurement of basic network properties

We measure the time evolution of the following basic network
properties: number of nodes N, directed links L and average degree
k̄, relative size of largest connected component �, average geodesic
ḡ, clustering coefficient C, as well as the comparison values ḡ/ḡr

and C/Cr. Average degrees, geodesics and clustering coefficients
are measured on the reflexive closures of the networks. Geodesics
and clustering coefficients were calculated using the MatlabBGL
package,7 which efficiently implements standard procedures such
as Johnson’s algorithm for finding all geodesics in sparse graphs.
The measured network properties are displayed in Fig. 7, values of
days 50, 150, and 445 are shown in Table 1. Cumulative distribu-
tions of in- and out-degrees of the last day’s networks are depicted
in Fig. 9(a)–(c).

We make the following observations.

4.3.1. Growing average degrees, shrinking geodesics
Average degrees are growing, Fig. 7(c). Merely the enemy net-

work reaches a steady state shortly before day 400. Geodesics
decrease, Fig. 7(g).

4.3.2. Links versus nodes
The L versus N curves for the most part have slopes between 1

and 2, Fig. 8. Due to heavy fluctuations and limited extension over
N, fits to power-laws are not reliable.

7 We used version 4.0. http://www.stanford.edu/ dgleich/programs/matlab bgl.
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Fig. 7. Network properties: (a) number of nodes N, (b) number of (directed) links L, (c) average degree k̄, (d) clustering coefficient C, (e) clustering coefficient C divided by
clustering coefficient of corresponding random graph Cr, (f) local efficiency Eloc, (g) average geodesic ḡ, (h) average geodesic ḡ divided by average geodesic of corresponding
random graph ḡr, (i) global efficiency Eglob, (j) reciprocity �, (k) assortative mixing coefficient (of clustering in undirected network) rC(k) , and (l) assortative mixing coefficient
(in undirected network) rundir. Arrows mark the outbreak of an in-game war at day 422.

4.3.3. Average geodesics close to random network value
For all networks the comparison parameter ḡ/ḡr lies well within

the band [0.5, 2] as reported for various scale-free networks by
Dorogovtsev and Mendes (2003), Fig. 7(h). It fluctuates slightly
above 1 for enemy and friend networks, growing for the former,
decreasing for the latter. In PM networks ḡ/ḡr is slightly below 1
for most timepoints.

4.3.4. Changing clustering coefficients
Clustering coefficients of friend networks decrease, those of

enemy networks increase, Fig. 7(d). Concerning C/Cr, values fall in
friend and PM networks but grow in enemy networks, Fig. 7(e). C/Cr

curves of PM networks fall between the curves of enemy and friend
networks. Decreasing clustering coefficients have been reported for
coauthorship networks (Ravasz, 2004), online social networks (Hu

Table 1
Network properties at days 50, 150, and the last day 445, for PM, friend and enemy networks.

PMs Friends Enemies

Day 50 Day 150 Day 445 Day 50 Day 150 Day 445 Day 50 Day 150 Day 445

N 2466 2461 2879 2712 3709 4313 1253 2161 2906
L 10,705 9773 16,272 15,367 21,563 31,929 4468 11,077 21,183
k̄ 5.25 4.80 6.77 6.85 7.36 9.79 6.69 9.77 13.77

C 0.24 0.19 0.17 0.34 0.28 0.25 0.02 0.03 0.03
C/Cr 112.14 99.10 74.08 133.30 143.32 109.52 3.47 5.87 6.13
ḡ 4.45 4.71 4.11 4.78 4.45 3.97 3.99 3.64 3.38
ḡ/ḡr 0.94 0.95 0.99 1.16 1.08 1.08 1.06 1.08 1.11
Eloc 0.29 0.23 0.23 0.38 0.34 0.32 0.02 0.04 0.05
Eglob 0.23 0.22 0.25 0.19 0.22 0.25 0.25 0.28 0.32

� 0.79 0.79 0.80 0.79 0.73 0.68 0.12 0.09 0.11
rC(k) −0.03 −0.02 −0.01 0.19 0.08 −0.09 0.02 −0.02 −0.00
rundir −0.13 −0.17 −0.04 0.06 −0.06 −0.00 −0.19 −0.23 −0.24
� 0.981 0.991 0.987 0.929 0.952 0.973 0.954 0.975 0.992
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Fig. 8. Links L versus nodes N for all timepoints. Values for enemies and PMs are
shifted vertically for clarity.

and Wang, 2009), and appear in a model of growing social net-
works (Jin et al., 2001). Note that C/Cr has a high value for friend
networks (C/Cr > 100), as is expected for most social networks of
positive ties (Newman and Park, 2003).

4.3.5. Positive reciprocity
All networks are reciprocal, Fig. 7(j). At the last day the PM

network has a reciprocity of � ≈ 0.80, the friend network has
� ≈ 0.68 after having reached a maximum of � ≈ 0.83 in the first
days. Excluding the first few days, the reciprocity indices of enemy
networks lie around � ≈ 0.1. The naive reciprocity R displays qual-
itatively similar behavior (not shown). Low reciprocities in enemy
networks may be explained by deliberate refusal of reciprocation,
to demonstrate aversion by lack of any response.

Holme et al. (2004) report a naive reciprocity value around
R = 0.4 for a message network, a value much lower than our mea-
sured ones around R ≈ 0.7 in PM networks. We suspect two factors
responsible for this discrepancy: A higher community coherence –

i.e. more social pressure to respond – in Pardus, and a possibly high
inactivity rate of users on the dating site. Probably for the same rea-
son of community coherence, reciprocities � ≈ 0.8 of Pardus PM
networks are well above � = 0.194, a value reported for messages
in email networks (Garlaschelli and Loffredo, 2004).

4.3.6. No assortativity
For PM networks, all five considered assortative mixing coeffi-

cients reach steady state values slightly below zero, Fig. 7(l) (only
plots of rundir are shown). PM networks are therefore disassorta-
tive, i.e. a player who sends/receives PMs to/from players with
many PM-partners displays a slight tendency of having few PM-
partners and vice versa. For a possible explanation see Holme et al.
(2004) who attest this observation as being in contrast to collabora-
tion networks, for which positive assortativity has been measured.
There it has been claimed that in friend networks individuals are
substitutable and negative mixing is optimal. The approximate
steady state of friend networks displays no clear tendency towards
assortativity or disassortativity after a transient phase of falling
assortativity. Note that by using an assortativity profile it is pos-
sible to uncover families of networks, similar to TSPs (Milo et al.,
2004; Foster et al., 2009).

4.3.7. Structural change of PM networks due to times of war
On day 422 a war between a substantial number of players broke

out in the game universe. A structural change of PM networks is
identifiable, most clearly in the number of links L, average degree
k̄, average geodesic ḡ, local efficiency Eloc and global efficiency Eglob,
see arrows in Fig. 7.

4.3.8. Growing largest connected component
The fraction of nodes in the largest connected component, �,

is growing in friend and enemy networks over almost all 445
days. On the last day we find � ≈ 0.973 for friends and � ≈

Fig. 9. Cumulative degree distribution of (a) PM, (b) friend and (c) enemy networks; clustering coefficient C as a function of degree for the (d) PM, (e) friend and (f) enemy
networks; nearest neighbor degree knn versus degree of the (g) PM, (h) friend, and (i) enemy networks. All distributions were taken at the last day.
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Fig. 10. Overlap versus (a) betweenness and versus (b) weight in the mutual part
of the largest connected component of the PM network at the last day. Light gray
markers show individual overlap values of the links. Note that 2336 links (out of
6502) have overlap O = 0. Black markers denote logarithmically binned averages,
thick lines are least squares fits.

0.992 for enemies. The value for PM networks fluctuates around
� ≈ 0.985.

4.4. Overlap versus betweenness and communication strength

For validating sociological hypotheses (see Section 5) we mea-
sured overlap versus PM weight and overlap versus betweenness in
the largest connected component of the mutual part of the last PM
network. We used this reduced network because it can be directly
compared to Onnela et al. (2007). Results on full PM networks and
on PM networks accumulated over different time-spans are very
similar however (not shown). Betweenness for all links was cal-
culated with the algorithm provided in the MatlabBGL package.
Results are compiled in Fig. 10.

4.5. Measurement of triad significance profiles

For drawing random networks from the U(X∗+, X+∗, M∗) dis-
tribution we use the same switching algorithm and Monte Carlo
method as Milo et al. (2002, 2004). We use the same program
mfinder.8 See Roberts (2000); Milo et al. (2003) for details. We
calculate the TSPs for all three network types at the last day with
the following parameters: 100 random networks, each generated
by performing Q · L switches, where Q is drawn uniformly from
{100, . . . , 200}. Resulting TSPs are displayed in Fig. 11.

4.6. Time evolution of TSPs

Fig. 12 shows the time evolution of TSPs in PM, friend, and enemy
networks, each day measured with the same parameters as in the

8 We used version 1.2. http://www.weizmann.ac.il/mcb/UriAlon.

Fig. 11. Triad significance profiles for the three network types (day 445).

previous section. For visual clarity, all single Z score evolutions were
smoothed with a moving average filter using a time window of 7
days. Z scores of PM networks stay constant, see Fig. 12(a). For friend
networks the order of Z scores stays relatively constant except for
the pairs {2, 4} and {10, 12}, which switch order abruptly at day
≈ 290, Fig. 12(b). At this time, a new game feature was introduced

Fig. 12. Evolution of triad significance profiles for (a) PM, (b) friend, and (c) enemy
networks. A moving average filter with a time window of 7 days was used for
smoothing.
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in Pardus, which allowed players to join syndicates. Because of this
a number of players reconsidered their friend and enemy relations.
Besides these abrupt changes, some trends are discernable, such
as the slow decrease of triad classes 1 and 3 or the increase of
triad classes 9 and 11. In enemy networks, Fig. 12(c), TSPs undergo
heavy fluctuations but settle into three groups of triad classes after
some hundred days: {1, 2, 3, 5, 6} being highly overrepresented (Z
score > 0.2), {4, 8, 9, 11} being neither clearly over- nor underrep-
resented (Z score between −0.1 and 0.1), and {7, 10, 12, 13} being
highly underrepresented (Z score < −0.15).

4.7. Measurement of triad transitions

To obtain insight in triad dynamics, we directly count all trans-
formations of all triads in friend networks, enabling us to deduce
empirical transition probabilities from one type to another. We
measure 13 × 16 matrices �d of day-d-to-day-(d + 50) triad tran-
sition probabilities for each day d ∈ {150, . . . , 200}. This matrix is
constructed by using an algorithm adapted from Batagelj and Mrvar
(2001). Its entries �d

ij
are the empirical probabilities that triads of

class i on day d become triads of class j on day d + 50. Note that
the sum of each row of �d equals 1. Values between differing
rows are not directly comparable due to a highly heterogeneous
triad census. For example, the census of all connected triads of
day 200 reads (20503, 19872, 13286, 36737, 48320, 58137, 1510,
20, 1209, 4862, 453, 4788, 7887), ordered by increasing triad id.
The number of unconnected triads, especially null triads, is much

larger namely

(
N
3

)
minus the number of connected triads; in our

case this amounts to an order of magnitude of ∼1010. Similarly, we
define the matrices Kd containing empirical transition counts kd

ij
of

triads of class i becoming class j. For both matrices only those triads
are counted in which all three of the involved characters still exist
on day d + 50.

We denote the matrix of element-wise time averages of �d and
Kd over all considered days by � and K, respectively. Entries kij of
matrix K are empirical average 50-day transition counts of triads
changing from class i to class j, entries �ij of matrix � the corre-
sponding transition probabilities. Fig. 14(a) and (b) shows � and
K. Fig. 14(c) displays the matrix of asymmetries in 50-day transi-
tion counts K for friend networks, i.e. K − KT . Similar matrices for
enemy networks have very different entries (not shown), matrices
for PM networks were not calculated.

5. Discussion

We proceed by discussing the results of Section 4 and bring them
into perspective.

5.1. Preferential attachment only in enemy networks

The model of preferential attachment assumes that nodes which
link to a network for the first time preferably attach to nodes with
high degrees (Barabási and Albert, 1999). If preferential attachment
holds in its classical form, the following facts should be observed:

1. Linking probability P(k) ∝ k˛, with ˛ = 1.
2. Degree distribution follows a power-law P(k)∼k−� .
3. Clustering coefficient C versus degree k is uniform.

In our data all three points do not hold in friend networks,
Figs. 6 and 9(b) and (e). The exponents derived from linking prob-
ability versus degree is ˛ ≈ 0.62 and definitely not ˛ = 1. Note
the existence of ‘super-preferentiality’ for very popular charac-
ters – a similar effect has been measured in Leskovec et al. (2008)

for LinkedIn, a social networking site for professional contacts.
There an exponent ˛ = 0.6 is reported. The degree distributions in
friend networks do not follow a power-law, the clustering coef-
ficient versus degree exhibits a clear downward trend. Note the
clearly negative value of rC(k) at the last days, Fig. 7(k). The expo-
nent of the clustering coefficient C(k) versus degree k is � ≈ −0.4.
About the same exponent has been measured in a game-theoretic
model on co-evolving networks Biely et al. (2007); an exponent of
� ≈ −0.33 was found in another large-scale social network (Csányi
and Szendrői, 2004).

For enemy networks the situation is different, see Figs. 6 and
9(c) and (f). The exponent from linking probability versus degree
˛ ≈ 0.90 is closer to ˛ = 1, the distribution of in-degrees follows
an approximate power-law with exponent � ≈ 1 (in the cumula-
tive distribution). Clustering coefficients and degrees are to a large
extent independent; deviations for large degrees can be explained
by two different mechanics of marking enemies, see Section 5.7.
Note that – while not clearly visible on the last day’s plot (Fig. 9(c))
– we find the distribution of out-degrees in enemy networks sep-
arated into two regimes following approximate power-laws with
different exponents, � ≈ −0.6 and � ≈ −2.5, respectively (in the
cumulative distribution). This is the case for many days in the
Artemis universe and also for most days in the Orion universe (not
shown). Actual preferential attachment has been measured in rel-
atively few works (Jeong et al., 2003; Leskovec et al., 2008; Hu and
Wang, 2009); the evolution of preferential attachment parameters
was measured in Csárdi et al. (2007).

In conclusion the model of preferential attachment can not be
applied for friend networks. The situation of the enemy networks
might be closer to a PA mechanism, but also there the situation is
more intricate.

5.2. Confirmation of the Weak ties hypothesis

The Weak ties hypothesis of Granovetter is an important propo-
sition of sociology and builds upon the assumption that “the degree
of overlap of two individual’s friendship networks varies directly
with the strength of their tie to one another” (Granovetter, 1973). By
Granovetter’s paradoxical formulation of the Weak ties hypothesis
(“The Strength of Weak Ties”), weak ties (e.g. casual acquain-
tanceships) are proposed to be strong in the sense that they link
communities in an essential way – i.e. they are local bridges of high
degree – while strong ties (standing for e.g. good friendships) cor-
respond to replacable intra-community connections. Under given
social balance assumptions, except for very unlikely conditions, “no
strong tie is a bridge”, and “all bridges are weak ties” (Granovetter,
1973). As an intuitive notion of strength of an interpersonal tie, Gra-
novetter mentions “the amount of time, the emotional intensity,
the intimacy (mutual confiding), and the reciprocal services which
characterize the tie”.

Quantitatively the hypothesis concerning the connection
between tie strength and overlap of friendship circles should man-
ifest itself in an increasing function of overlap, O(w), versus weight.
This is clearly the case for PM networks, Fig. 10(b), where an approx-
imate cube root law is suggested,

O(w) = w0.30 ≈ 3√w (13)

Note that our method does not encounter sampling issues as in
e.g. Onnela et al. (2007); in this sense our results are free of bias.

A direct way of testing the Weak ties hypothesis is to examine
the correlation between betweenness and overlap. By the Weak ties
hypothesis, the overlap O(b) as a function of betweenness should
be decreasing. Our data strongly confirms this prediction, Fig. 10(a)
and suggests an inverse square root law. Logarithmically binned
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Fig. 13. One transition representing triadic closure: id 6 → id 13.

average values lie on a line with slope � ≈ −0.54.

O(b) = b−0.54 ≈ 1√
b

. (14)

These results are in agreement with mobile phone call network
data (Onnela et al., 2007), and are robust across game universes and
accumulation times. The Weak ties hypothesis has also previously
been tested by Friedkin (1980) on a small-scale social network of
biologists.

5.3. Confirmation of triadic closure

5.3.1. Triad significance profiles (implicit evidence)
Comparing TSPs of various types of networks can reveal “super-

families” of evolved or designed networks which have similar local
structures in common (Milo et al., 2004). In the following we use the
TSP to confirm another important prediction of Granovetter (1973).
This conjecture follows balance considerations of Heider (1946) and
reads as follows: In a social network in which there exist weak and
strong (or no) ties between individuals, “the triad which is most
unlikely to occur, [. . .] is that in which A and B are strongly linked,
A has a strong tie to some friend C, but the tie between C and B
is absent” (Granovetter, 1973). The phenomenon of triadic closure
(Rapoport, 1953) states that individuals are driven to reduce this
cognitive dissonance, Fig. 13. Because of this the triad in which
there exist strong ties between all three subjects A, B and C should
appear in a higher than expected frequency.

Following the considerations of Granovetter about tie strength
we identify the concept of weak/strong ties with asymmet-
ric/mutual dyads in our digraphs. Translated into our formalism
the hypothesis reads: “In friend networks, triad class 6 should have
smallest Z score, triad class 13 should have highest Z score”. In other
words, triad class 13 should be the network’s strongest three-node
motif, triad class 6 should be it’s strongest three-node antimotif
(Milo et al., 2002). More generally, if we focus on completeness, we
expect underrepresentation of the incomplete triad classes 1–6 and
overrepresentation of the complete triad classes 7–13. Note that
quantitative evidence for triadic closure given this way is implicit
at best, since the overrepresentation (underrepresentation) of triad
class 13 (6) does not explain how or if there is a direct connection
in the evolution of these triad classes. We give explicit evidence
for triadic closure in the next section by measuring triad transition
dynamics.

The question about the reverse situation, networks of negative
ties, has been raised in the outlook of Granovetter (1973) but, to
our knowledge, has never been measured on large scales. Following
the same social balance considerations we expect reversed roles of
completeness: Instead of the absence of a completing third link, its
presence should cause cognitive dissonance (however, note that a
complete triad with only negative links may be seen as ambiguous
concerning balance (Doreian, 2004)). Thus triad classes 1–6 should
be overrepresented, triad classes 7–13 underrepresented in enemy
networks.

For friend and PM networks, excellent agreement is found with
Granovetter’s prediction: Triad class 6 has the minimum, class 13 a
maximal Z score, Fig. 11. Our findings further coincide with the TSPs

of the superfamily of social and hyperlink networks found in Milo
et al. (2004) and with TSPs of other social networks Hamasaki et al.
(2009). Concerning enemy networks, we observe confirmation of
our reverse hypothesis to a large extent: Most enemy Z scores have
opposite signs of those in friend networks. Note the exceptions:
triad id 4 is not clearly overrepresented, ids 9 and 11 are not clearly
underrepresented. The circular triad (id 8) should be considered
an exceptional or ‘neutral’ class, having no clear tendency in all
network types.

In the above paragraphs triad significance profiles of 1 day were
analyzed. By measuring evolutions of TSP, we are able to confirm
the robustness of the results. As one can see in Fig. 12(c), TSPs may
need some hundred days to reach an approximate steady state. On
the other hand it is apparent from Fig. 12(b) that as social networks
evolve, their microscopic structures do not always stay completely
constant. Sudden jumps in the TSP trajectories signal abrupt global
systemic changes.

5.3.2. Triad transition rates (explicit evidence)
We first focus on transitions between the groups of incomplete

and complete connected triads, i.e. on values in the upper right
and lower center zones of K. According to the hypothesis of triadic
closure, k6,13 should contain high values, its counterpart k13,6 lower
ones. As apparent from Fig. 14(b), this is the case: k6,13 = 305.5 >
22.6 = k13,6. This result is directly visualized in Fig. 14(c), which
depicts the matrix K − KT . The darker a square ij, the higher the
outflow i → j compared to the inflow j → i; the lighter a square ij,
the higher the inflow j → i compared to the outflow i → j.

In general, we measure more incomplete → complete transi-
tions between connected triad classes (upper right zone of K) than
vice versa (lower center zone of K). On the other hand, some excep-
tions can be identified, for example k5,13 = 20.0 < 39.2 = k13,5.
Whenever these exceptions appear they are comparably mild;
again, observations are robust across game universes and time
spans. Note that in (Szell et al., 2010) we measured transition rates
of signed triadic closure, i.e. triadic closure in signed networks, and
shed light on dynamics in signed networks.

5.4. Network densification

In Leskovec et al. (2007) intriguing observations concerning uni-
versal features of growing real-world networks have been made.
Their empirical observations apparently challenge two conven-
tional assumptions of popular network models such as PA (Barabási
and Albert, 1999), namely constant average degrees and slowly
growing network diameters:

1. Shrinking diameters: As networks grow their diameters decrease.
2. Densification power-laws: Over time, networks become more

dense. Densification – as measured as number of edges ver-
sus number of nodes – follow a power-law. The average degree
grows.

All growing networks measured in this work confirm the
observations of growing average degrees and shrinking diameters
(Fig. 7(g) shows shrinking geodesics; we observe the same evolu-
tion for diameters and effective diameters as defined in Leskovec et
al. (2007) (not shown)). Concerning power-law densification, even
though our data does not allow for a statistically conclusive quan-
titative statement, visual inspection clearly reveals that growth
is super-linear, Fig. 8. Network densification has previously been
studied under the name of accelerated growth (Dorogovtsev and
Mendes, 2001, 2003). Growing average degrees were observed in
all three time evolution studies of growing networks we are aware
of (Holme et al., 2004; Leskovec et al., 2007; Ravasz, 2004).



Author's personal copy

M. Szell, S. Thurner / Social Networks 32 (2010) 313–329 327

Fig. 14. (a) Matrix � of empirical average 50-day transition probabilities of triad
classes in friend networks over the days 150–200. Circles mark transitions which
never occurred. Black squares mark average transition probabilities ≥ 0.02. (b)
Matrix K of empirical average 50-day transition counts of triad classes in friend net-
works. Black squares mark average transition counts ≥ 50. (c) Matrix of asymmetries
between empirical average 50-day transition counts K of triad classes in friend net-
works. Black and white squares mark average transition counts with asymmetries
≥ 50. Black crosses mark entries without data. Thick circles mark the asymmetry of
transitions between triad classes 6 and 13.

From decreasing distances it follows naturally that global effi-
ciency increases, Fig. 7(i). At the same time evolution of local
efficiency follows the evolution of clustering coefficients, Fig. 7(f).
PM networks have approximately the same local and global effi-
ciency (around 0.25), in friend networks local efficiency (around
0.33) is higher than global efficiency (around 0.22), in enemy net-
works local efficiency is much lower (around 0.04) than global
efficiency (around 0.28).

5.5. Inconclusive social balance dynamics

Social balance theory goes back to the cognitive balance con-
siderations of Heider (1946). A complete triad ninjnk is defined to

be balanced if the product of signs sijsjkski = 1, and is unbalanced
otherwise. Members of a balanced complete triad thus fulfill the
following adage (Antal et al., 2006; Heider, 1946):

– a friend of my friend is my friend
– a friend of my enemy is my enemy
– an enemy of my friend if my enemy
– an enemy of my enemy is my friend

In physics the first statement corresponds to a ferromagnetic
system, the other three to a ‘frustrated’ system. In graph theory,
the concept of social, or structural, balance has been generalized to
an arbitrary amount of subjects by Cartwright and Harary (1956);
hypotheses about the evolution of social balance have been con-
jectured (Doreian, 2004; Doreian and Mrvar, 2009). We measure
the evolution of social balance by using optimizational partition
algorithms implemented in Pajek.9 Here we face three concrete
problems: (i) Algorithmic complexity: Due to algorithmic complex-
ity runtime diverges for large numbers of nodes (Pajek limits the
number of nodes to 250). Thus for measurements of balance we
are forced to select groups of characters. (ii) Group selection: Char-
acters have different sign-up dates. This starts to matter for any
selected group when long-time considerations are carried out. One
gets inhomogeneous groups, where some characters have a long
history of relations whereas others have not. (iii) Growth of aver-
age degrees: The permanent growth of average degrees, Fig. 7(a),
is inconsistent with the necessary assumption of constant degrees,
such as taken as basis for the monastery study of Sampson (1968)
analyzed in Doreian and Mrvar (1996). This assumption is also
needed in models and analytical work (Antal et al., 2006), where
dynamics takes place only on complete graphs, i.e. graphs display-
ing a dichotomy of link types (positive or negative link) in contrast
to the trichotomy (positive, negative or no link) of the Pardus net-
works.

Ignoring these three issues, our attempts to measure the evo-
lution of social balance in several groups of characters at various
time scales and cluster sizes yield no conclusive results. Neither an
increase nor a decrease in balance could be observed. Measuring
social balance of fixed groups over time seems inherently futile, for
the following reason: Signs of links do almost never switch (Szell et
al., 2010), so there may be no propagation of balance in social sys-
tems. This observation is diametrically opposed to aforementioned
classical assumptions (Antal et al., 2006). Also, system complex-
ity is so high (factions, alliances, wars, . . .), that simple analytical
steady states (e.g. two internally positively – but among each other
negatively connected sets of nodes) are impossible to reach. For a
deeper discussion about these and several other problems related
to social balance theory and inconsistencies in empirical findings
see Hummon and Doreian (2003); Doreian (2004).

Note that the friend relation is transitive, but not so the enemy
relation.10 By construction, complete triads in the reflexive closure
of friend (enemy) networks are balanced (unbalanced). In enemy
networks one therefore expects less complete triads and clustering
coefficients C closer to their random graph values – i.e. smaller C/Cr

– than in networks of friends. As apparent from Fig. 7(e), this is fully
confirmed.

5.6. Confirmation of the Dunbar number

Out-degrees of networks studied here are limited by kout ≈ 150,
Fig. 9(a)–(c).

9 We use version 1.24 (Doreian and Mrvar, 1996; de Nooy et al., 2005; Doreian
and Mrvar, 2009).

10 A binary relation R is transitive if xRy and yRz implies xRz.
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This number was conjectured by Dunbar (1993) to be a limiting
number in group sizes of humans and human-like mammals, due
to their limited cognitive capacities.

5.7. Two categories of enemies

It has been suggested that identifying negative social tie
mechanics is more important for gaining insight in social group
dynamics than identifying mechanics of positive social ties
(Labianca and Brass, 2006). Our measurements provide first steps
toward this direction.

We observe that in-degrees in enemy networks grow much big-
ger (kin ≈ 500) than in-degrees in friend and PM networks (kin ≈
150), Fig. 9(b) and (c). Also, the assortativity coefficient rundir of
enemy networks is clearly negative, Fig. 7(l). In the average neigh-
bor degree knn versus degree k one observes two classes or types,
Fig. 9(i). The first class consists of characters with low degrees
(k < 50), all having an average neighbor degree of knn ≈ 100. The
second class of characters has a degree of k > 100 and an aver-
age neighbor degree of knn ≈ 28. Between these classes a sharp
transition occurs. This impression is robust across time and game
universes.

As mentioned in Section 5.1, on many individual days the dis-
tribution of out-degrees of enemy networks is separated into two
regimes roughly following power-laws with markedly different
exponents. We find clear qualitative differences between in- and
out-degree distributions in enemy networks, in contrast to the
other network types. Further, reciprocity is very low in enemy net-
works, as opposed to high reciprocity in the other network types,
Fig. 7(j). These measurements suggest two distinct mechanics of
enemy marking dynamics at work:

1. Private enemies: A player who directly experiences a negative
(asocial) action by another player, such as an attack of her build-
ing or a verbal insult, is likely to immediately react by marking
the offender as enemy. If the two involved players keep this a pri-
vate affair, only a local, dyadic vendetta without envolvement of
more players may ensue.

2. Public enemies: Some players have a destructive personality
or, more commonly, want to try out a destructive personal-
ity (Castronova, 2005). For this purpose they may (role)play
evil characters, such as ‘pirates’. These players tend to take
enjoyment in destroying other players’ work or see it as their
‘task’. Anonymity of the internet facilitates this behavior to some
degree since possible social repercussions in real-world repu-
tation are absent. For this reason these few individuals tend to
cause a lot of offenses to a big number of players. If such a subject
is identified by the community (players are very busy in using
the forums to keep others up-to-date of the latest offenses), she
may receive pre-emptive enemy markings, either by friends of
offended friends or by otherwise non-involved players who hap-
pen to read the forums. This destructive behavior and the indirect
marking mechanism leads to the emergence of ‘public enemies’,
i.e. a few characters with a very high in-degree of enemy mark-
ings. The strength of positive social ties is likely to be boosted
by people who share the same common enemies: “A world that
includes self-proclaimed and loudly advertised Evil people run-
ning about represents a great boon to those who are hungry to
fight for the Good. Without Evil people, who could be Good?”
(Castronova, 2005).

It is an open question to which extent negative social behavior
in real society deviates from the behavior of humans in our game
society. Due to lack of other high-frequency analyses on large-scale
negative tie networks, it remains to be established whether the
above findings can be referred to as ‘universal’.

5.8. Differences in network types

Different network types have different properties (Newman and
Park, 2003; Milo et al., 2004), and show a different evolution of
these properties. For example, it has been argued by Labianca and
Brass (2006) that “Friendship development is viewed as a gradual
process”, but “negative relationship development is a much faster
process that tends to lead to the other person being included in
coarse-grained categories such as ‘rival’ or ‘enemy”’. Properties of
and interactions between several of the measured networks are
discussed in detail in Szell et al. (2010).

6. Conclusion

We explore novel possibilities of a quantification of human
group-behavior on a fully empirical and falsifiable basis. We study
network structure and its evolution of several social networks
extracted from a massive multiplayer online game dataset. Prac-
tically all actions of all 300,000 players over a period of 3 years
are available within one unique and coherent source. Players live
a second economic life and are typically engaged in a multitude
of social activities within the game. With this data we can show
for the first time marked differences in the dynamics of friend and
enemy dynamics. A detailed analysis of high-frequency log files
focuses on three types of social networks and allows to subject a
series of long-standing social-dynamics hypotheses to empirical
tests with extraordinary precision. Along these lines we propose
two social laws in communication networks, the first express-
ing betweenness centrality as the inverse square of the overlap,
the second relating communication strength to the cube of the
overlap. These laws not only provide strong quantitative evidence
for the validity of the Weak ties hypothesis of Granovetter, they
are also fully falsifiable. Our study of triad significance profiles
confirms several well-established assertions from social balance
theory. We find overrepresentation (underrepresentation) of com-
plete (incomplete) triads in networks of positive ties, and vice
versa for networks of negative ties. We measure empirical tran-
sition probabilities between triad classes and find evidence for
triadic closure, again with unprecedented precision. We compare
our findings with data from non-virtual human groups and con-
clude that online game communities should be able to serve as
a model for a wide class of human societies. We demonstrate
the realistic chance of establishing socio-economic laboratories
which allow to measure dynamics of our kind at levels of preci-
sion so far only known from the natural sciences. In recent work
on an extended dataset (Szell et al., 2010), further non-trivial
structures of social systems in our online world were uncov-
ered, reasserting its potential for harnessing knowledge about the
fundamental nature of the organization and dynamics of human
society.

Acknowledgements

We are indebted to Werner Bayer for compiling Pardus backup
data and for providing computer power for TSP calculations. This
work was supported in part by Austrian Science Fund FWF P 19132.

References

Antal, T., Krapivsky, P., Redner, S., 2006. Social balance on networks: the dynamics
of friendship and enmity. Physica D 224 (1–2), 130–136.

Bainbridge, W., 2007. The scientific research potential of virtual worlds. Science 317
(5837), 472.

Barabási, A., Albert, R., 1999. Emergence of scaling in random networks. Science 286
(5439), 509.

Bartle, R., 2004. Designing Virtual Worlds. New Riders Games.
Batagelj, V., Mrvar, A., 2001. A subquadratic triad census algorithm for large sparse

networks with small maximum degree. Social Networks 23 (3), 237–243.



Author's personal copy

M. Szell, S. Thurner / Social Networks 32 (2010) 313–329 329

Bettencourt, L., Kaiser, D., Kaur, J., Castillo-Chávez, C., Wojick, D., 2008. Population
modeling of the emergence and development of scientific fields. Scientometrics
75 (3), 495–518.

Bettencourt, L., Lobo, J., Helbing, D., Kühnert, C., West, G., 2007. Growth, innovation,
scaling, and the pace of life in cities. Proceedings of the National Academy of
Sciences 104 (17), 7301.

Biely, C., Dragosits, K., Thurner, S., 2007. The prisoner’s dilemma on co-evolving
networks under perfect rationality. Physica D 228 (1), 40–48.

Biely, C., Hanel, R., Thurner, S., 2009. Socio-economical dynamics as a solvable
spin system on co-evolving networks. The European Physical Journal B 67 (3),
285–289.

Carrington, P., Scott, J., Wasserman, S., 2005. Models and Methods in Social Network
Analysis. Cambridge University Press.

Cartwright, D., Harary, F., 1956. Structural balance: a generalization of Heider’s the-
ory. Psychological Review 63 (5), 277–293.

Castronova, E., 2005. Synthetic Worlds: The Business and Culture of Online Games.
University of Chicago Press, Chicago.

Castronova, E., 2006. On the research value of large games. Games and Culture 1,
163–186.

Chatterjee, A., Sinha, S., Chakrabarti, B., Šurda, A., Borkent, B., Dammer, S., Schoen-
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