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Complex systems – when treated as systems accessible to natural sciences – pose tremen-
dous requirements on data. Usually these requirements obstruct a scientific understand-

ing of social phenomena on scientific grounds. Due to new developments in IT and

collective human behavior, new dimensions of data sources are beginning to open up.
Here we report on a complete data set of an entire society, consisting of over 350,000

human players of a massive multiplayer online game. All actions of all players over
three years are recorded, including communication behavior and establishment of so-

cial ties. In this work we review the first steps undertaken in analyzing this vast data

set, focusing on social dynamics on friend-, enemy- and communication networks. This
new data-driven approach to social science allows to study socio-economic behavior of

humans and human groups in specific environments with unprecedented precision. We

propose two new empirical social laws which relate the network properties of link weight,
overlap and betweenness centrality in a nonlinear way, and provide strong quantitative

evidence for classical social balance assumptions, the weak ties hypothesis and triadic

closure. In a first-time analysis of large-scale multirelational networks we discover sys-
tematic deviations between positive and negative tie networks. Exploring such virtual

“social laboratories” in the light of complexity science has the potential to lead to the

discovery of systemic properties of human societies, with unforeseen impact on managing
human-induced crises.

Keywords: Social network analysis; Social balance; Mobility; Massive multiplayer online

game; Quantitative social science.

1. Introduction

In this contribution we review some highlights of a recent series of studies of social

dynamics in a large-scale, virtual human society [40, 41, 42, 43]. The work is moti-

vated by the two fundamental problems associated with the social sciences of group
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dynamics since its existence: first, human collective dynamics constitutes a complex

system, i.e. it influences its proper boundaries on which it depends. In other words

human collective dynamics is context-dependent. For this reason it is not sufficient

to measure only the dynamics of the constituents of the system (actions, decisions,

movements, communication, etc., of humans), but it is imperative to take into ac-

count – at the same time – the surroundings (circumstances) of these constituents.

This means that data requirements for complex systems are in general much higher

than for simple physical systems, leading to the second fundamental problem: ex-

actly where most needed, data in social sciences is comparably scarce and often of

poor quality [26,45]. Until now, the needed quantities and quality of data on human

societies was plainly impossible to obtain. Traditional methods of data collection

in the social sciences such as questionnaires, polls, etc. are not only incapable of

delivering the required data density, they also introduce well-known biases, i.e. the

experiment influences the system [6].

Complex systems, such as human societies, consist of many locally interacting

agents. Their actions are often influenced by their local surroundings as well as

by global boundaries of the entire system. When these interactions are sufficiently

strong and long-range, this may result in non-linear feedbacks leading to the often

unexpected properties of complex systems which make them so hard to understand,

predict and usually impossible to manage and control. Without a radically better

understanding of collective human behavior, there is little hope to improve the

handling of human-induced crises which are usually the most devastating [20].

Here we propose to follow a new approach in social sciences based on the follow-

ing philosophy: from the simultaneous measurements of (i) the microscopic behav-

ior (interactions, decisions, etc.) of humans within their surroundings and (ii) the

macroscopic phenomena (systemic, collective, aggregate dynamics) emerging from

these microscopic interactions it should be possible to derive a statistical mechanics

of societies [8], i.e. a prescription of how to aggregate microscopic (individual) be-

havior to a systemic (societal) scale. Knowledge about this prescription might open

possibilities to manage systemic dynamics, which is often large-scale and associated

with tremendous costs.

As a first step in this direction we recorded practically all actions of all players

taken in the virtual world of the self-developed, proprietary massive multiplayer on-

line game (MMOG) Pardus. MMOGs provide a new tool for understanding human

collective phenomena and social dynamics on a hitherto unthinkable scale [2, 10].

Data collected from Pardus at rates comparable to physical experiments, allows

to conduct complete measurements of socially interacting humans, where subjects

do not consciously realize the act of measurement. Contrary to traditional social

sciences, in MMOGs the number of subjects can reach several millions, with billions

of recorded actions. These actions of individual players are known in conjunction

with their surroundings. This offers the unique opportunity to study a complex

social system: specific outcomes of decisions can be measured, conditions under

which individuals take decisions can in principle be controlled. In this respect social
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science is on the verge of becoming a fully experimental science [26] which should

increasingly become capable of making a great number of repeatable and eventually

falsifiable statements about collective human behavior. It is not obvious a priori that

a population of online players is a representative sample of real-world societies [46].

Also, behavior in an online environment may be influenced by the anonymity of the

users and does not necessarily reflect behavior of humans in offline environments

where reputation effects often play an important role. For example, it is known that

in certain online environments a fraction of users frequently act out different per-

sonalities or even genders due to the absence of real-life social repercussions [22].

However, several recent studies are providing evidence that statistical differences

of real-world communities and game-societies are often marginal [23, 24]. One rea-

son for a generally good overlap between online and offline personality of users in

MMOGs might be the substantial investment of time and emotions into their online

characters and their online reputation [42].

2. The Game

Pardus (http://www.pardus.at) is a browser-based MMOG in a science-fiction

setting, open to the public and played since September 2004. Browser-based

MMOGs are characterized by a substantial number of users playing together in the

same virtual environment connected through an internet browser [5,9]. Players live

and act within a virtual, open-ended and persistent futuristic universe, making up

their own goals. They claim territories, engage in economic activities, self-organize

within groups, decide to go to war, etc., completely on their own accounts. Typically

players participate from several weeks up to years [42].

In this virtual world every player owns a spacecraft with cargo capacity, which al-

lows to roam the universe, to produce and trade commodities, socialize, etc., “to gain

wealth and fame in space” (http://www.pardus.at/index.php?section=about).

Main driving forces in Pardus are the possibility to trade and to engage in social

life such as friendship, cooperation or competition. There are a number of well-used

ways to publicly display one’s “status” within the virtual society: accumulation of

(expensive) status symbols, medals of honor for war efforts, altruistic behavior, etc.

Presently more than 350,000 players have registered at Pardus, on a daily basis it

is actively played by ≈ 12,000. Of the three available, independent game universes,

here we focus on Artemis which was opened in June 2007 and accommodates ≈ 6,500

active players. Data is available for up to 1,238 consecutive days.

2.1. Types of social interactions

Players can anonymously mark others as friends (F) or enemies (E), for any reason.

The marked players are added to the marker’s personal friends or enemies list.

Additionally, every player has a personal friend of and enemy of list, displaying all

players who have marked them as friend or enemy, respectively. Private Messages

(PM) are the prevalent form of communication (C) within the game. It is a system

http://www.pardus.at
http://www.pardus.at/index.php?section=about
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(a) Pajek (b) Pajek

Fig. 1. (a) Accumulated PM communications over 445 days between 78 individuals. Link colors of
light gray, gray, and black correspond to 1–10, 11–100 and 101–1000 PMs sent, respectively. (b)

Friend (green, solid) and enemy (red, dashed) relations on one day between the same individuals.

See http://www.youtube.com/user/complexsystemsvienna for animated time evolutions of these
networks. (following [42])

similar to email – a PM is only seen by sender and receiver. There are three more

types of social interaction: Trade (T), attack (A), and placing a bounty on another

player (B). The removal of friendship (D) and enmity (X) links are further actions.

The action types C, T, F, amd X can be associated with positive actions, while A,

B, D, and E are negative actions.

All relations can be displayed as networks; see Fig. 1 for a visualization of PMs

and friend/enemy relations between a small number of players.

2.2. Types of social networks of the players

Networks are represented as directed graphs [44]. Nodes represent players, links

indicate friendships, enemies, communication, trade, attacks, etc., in the respective

networks. Here we focus on three networks.

2.2.1. Communication networks

A set of networks is extracted by considering all PM communications on a weekly

timescale. A weighted link pointing from node i to node j is placed if player i has

sent at least one PM to player j within a given week. Weights correspond to the

total number of PMs sent within this week. Figure 1 (a) illustrates a subgraph of

PM networks.

2.2.2. Networks of friends and enemies

Friend and enemy markings define the following networks: a link is placed from

node i to j if player i has marked player j as friend/enemy. Note that friend/enemy

markings exist until they are removed by players (or as long as the players exist),

while PM networks are constructed through an accumulating process. Figure 1 (b)

http://www.youtube.com/user/complexsystemsvienna
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illustrates a subgraph of a friend/enemy network.

3. Statistical Results on Behavioral Streams

In a first attempt to understand the nature of the constituents of the system, the

players, we focus on the statistical properties of how players are performing actions

and reactions without considering the topology of the networks spanned by these

actions [43]. Here the data set includes all actions performed by all 34,055 players

active in the first 1,238 days of the game universe Artemis. For the analysis, we

discard players with a history of less than 1,000 actions, leaving a set of 1,758

players and their ‘behavioral codes’. The action stream of a player i is defined

as his time-ordered stream of N actions in his ‘life’, Ai = {an|n = 1, . . . , N},
where the an are any of the 8 previously defined action types. Similarly we denote

Ri = {rn|n = 1, . . . ,M} as the ordered set of received actions of a player i. The

chronologically combined sequence Ci is the set of player i’s actions and received-

actions, having length N+M . We do not consider actual times between consecutive

actions but only the time ordering – we work in ‘action-time’.

We first analyze the transition probability matrix formed by all actions and

received actions in all Ci sequences. By p(Y |Z) we denote that an action of type

Y directly follows an action of type Z. The ratio p(Y |Z)
p(Y ) additionally accounts for

the different frequencies of action types and - if it deviates from 1 - indicates if

there are correlations between subsequent actions or received actions. Figure 2 (a)

and (b) shows the transition matrix of all actions and received actions (the latter

marked by the subscript r), and the ratios p(Y |Z)
p(Y ) for positive and negative actions

or received actions, respectively. From these measured values we find the following

results: (i) The diagonal in Fig.2 (a) shows that most actions are highly repetitive,

and that communication displays a distinct back-and-forth nature (larger values

for C → Cr and Cr → C than for C → C and Cr → Cr). (ii) The probability

to perform a good action is significantly higher if previously a good action has

been received, and vice versa. (iii) Negative behavior, especially attack, is highly

persistent. Further analysis shows that the probability to perform a negative action

is significantly higher if previously a negative action has been received, compared

to the case where a positive action has been received.

Applying anomalous fluctuation techniques as previously developed for the study

of e.g. DNA sequences and economic timeseries [39] on the ‘world-lines’ of action

streams (a world line goes up (down) if a good (bad) action was performed) quan-

tifies the persistence or anti-persistence of action types and reveals further find-

ings [43]. For example, the vast majority of players are ‘good’, and the few ‘bad’

players tend to be short-lived and dominant, i.e. they quit the game after fewer

actions than good players and they perform significantly more actions than they re-

ceive. We interpret these findings as empirical evidence for self-organization towards

reciprocal, good conduct within a human society.



April 20, 2012 16:26 WSPC/INSTRUCTION FILE
szell˙thurner˙successes˙2012˙review01

6 M. Szell and S. Thurner

t+1

t

 

 

X
r

X
r

T
r

T
r

C
r

C
r

F
r

F
r

E
r

E
r

A
r

A
r

B
r

B
r

D
r

D
r

D

D

B

B

A

A

E

E

F

F

C

C

T

T

X

X

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

+

−
r

−

+
r

+
r

−

−
r

+

t+1

t

0.81 (−399) 0.26 (−437) 1.34 (714) 0.23 (−349)

0.21 (−482) 14.67 (1875) 0.29 (−389) 0.99 (−0.3)

1.34 (661) 0.24 (−432) 0.78 (−410) 0.35 (−295)

0.25 (−341) 0.87 (−19) 0.34 (−301) 19.93 (1837)

(b)

Fig. 2. (a) Transition probabilities p(Y |Z) of all consecutive (t → t + 1) actions and received

actions in all Ci sequences of actions and received actions (the latter marked by the subscript

r). High values in the diagonal show that actions tend to be repetitive. Communication is the
most commonly performed (and received) action, and it displays a distinct back-and-forth nature

(larger values for C → Cr and Cr → C than for C → C and Cr → Cr). (b) The ratios
p(Y |Z)
p(Y )

for positive and negative actions or received actions, additionally accounting for the different

frequencies of action types. Deviations from 1 indicate correlations between subsequent actions

or received actions, Z-scores (number of standard deviations) are shown in brackets. Positive
correlations are shown on black backgrounds: The probability to perform a positive action is

significantly higher if previously a positive action has been received, and vice versa. Negative
behavior is highly persistent. (following [43])

4. Subdiffusive Mobility and Socio-economic Borders

Diffusion processes in complex systems often do not follow Gaussian statistics [30].

In particular, instead of Brownian motion, i.e. a linear time dependence of the mean

square displacement (MSD)a, σ2(t) ∼ t, often anomalous diffusion is observed, typi-

cally in the form of a non-linear, power law growth of the mean square displacement

aThe MSD is a standard measure in physics, measuring the displacement of mobile objects (such
as particles) over time. It is defined as σ2 (t) = 〈(r (T + t)− r (T ))2〉, where r (T ) and r (T + t)
are the locations a player occupies at times T and T + t respectively, and where (r (T + t)− r (T ))
denotes the distance between the two locations. The average 〈·〉 is performed over all windows

of size t, with their left boundaries going from T=0 to T=1,000-t, and over all players in the
considered data set.
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Fig. 3. Mean square displacement (MSD) of (a) players and (b) models, the time scale is given

in days. The MSD of players follows a power relation σ2(t) ∼ tν with a subdiffusive exponent
ν ≈ 0.26. This functional form is well reproduced by a ‘TOM model’ (Time Order Memory) which

takes into account the measured long-range correlations of previously visited locations. Model

curves are shifted vertically for visual clarity. (following [41])

σ2(t) ∼ tν , ν 6= 1. This functional form is strongly related to the breakdown of the

classical central limit theorem due to heavy tail distributions or long-range corre-

lations.

A particular kind of diffusion process in social systems is the mobility of hu-

mans. Understanding the statistical patterns of human mobility is a considerable

challenge with important applications to traffic management [19], epidemiology [3],

or information spreading [32]. Large amounts of data on various human activities,

most importantly mobile phone records [14], have recently been used as a proxy

for human movements. These studies have provided insights into several aspects of

human mobility, uncovering distinct features such as scaling laws and anomalous

diffusion [38].

In the reviewed mobility study [41], we analyze the raw data of the daily po-

sitions of the 1,458 most active players in their game universe over 1,000 days.

We find that players move in a highly subdiffusive fashion, showing an exponent

of ν ≈ 0.26 � 1 in the MSD, see Fig. 3 (a). The subdiffusion stems from long-

range correlations in the return to previously visited locations. We use this insight

to construct the ‘TOM model’ (Time Order Memory) which reproduces well the

slope, see Fig. 3 (b). The TOM model incorporates the distributions of first return

times (power law), together with the measured distribution of waiting times (power

law) and the distribution of jump distances (exponential). A simple Markov model

with perfect information on first order transition probabilities, as well as the previ-

ously suggested preferential return model [38] fail to reproduce the measured MSD

because they overemphasize preferences of locations visited long ago.

Further, we suggest a technique to recover socio-economic regions in the game
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Fig. 4. Evolving network properties: (a) number of nodes N , (b) number of (directed) links L, (c)
average degree k̄. Arrows mark the outbreak of an in-game war at day 422. (following [42])

universe almost perfectly, by applying community detection methods to the raw

movement data. This method works because - as we are able to quantify - players

have a significant tendency to avoid crossing borders of ‘countries’ [41]. This infor-

mation is of importance for understanding the role of political or socio-economic

borders on the migration of humans, where the presence of such borders can have

a strong influence on mobility [36].

5. Socio-dynamic Results using Networks

We measure the time evolution of basic network properties such as: number of

nodes N and directed links L, average degree k̄, Fig. 4, for technical details see [42].

Cumulative distributions of in- and out-degrees of the networks are depicted in

Figs. 5 (a) and (b). Note how out-degrees (i.e. the amount of friends / enemies

/ communication partners) are limited by kout ≈ 150. This well-known “Dunbar

number” [12] is assumed to be a natural limit of group sizes of humans and primates

due to limited cognitive capacities.

5.1. The network densification effect

The networks studied in [42] confirm the observations of growing average degrees,

Fig. 4 (c), and shrinking diameters (not shown). This means that over time, people

in a social network become closer, in the sense that e.g. circulating information

has to be passed on by fewer and fewer people for reaching a destination in the

network. This network densification [29] or accelerated growth [11] is in contrast to

simple network growth models such as preferential attachment (PA) [4]. The model

of PA assumes that nodes which link to a network for the first time preferably

attach to “popular” nodes [4]. Growing average degrees were also observed in recent

dynamical network studies [21,29,34,37].
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Fig. 5. Cumulative degree distribution of (a) PM, (b) friend and enemy networks; clustering

coefficient C as a function of degree for the (c) PM, (d) friend and enemy networks; nearest
neighbor degree knn versus degree of the (e) PM, (f) friend and enemy networks. Thick dashed

lines mark two classes of enemies. Networks are shown at day 445. (following [42])

5.2. Asymmetry of friend and enemy networks

If a network follows a PA model three facts should be observable. (i) the linking

probability P (k) is proportional to kα, with α = 1; (ii) the degree distribution

follows a power-law p(k) ∼ k−γ , and (iii) the clustering coefficient ci is uncorrelated

with the degree ki.

None of these facts are present in the friend networks, Figs. 5 (b) and (d), and 6.
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The linking probability exponent of α = 0.6 deviates significantly from α = 1.b The

degree distribution is hardly a power-law, and the clustering coefficient depends

on k, Fig. 5. For enemy networks the situation is different. The linking probability

exponent is α ≈ 0.9, the distribution of in-degrees is closer to an approximate

power-law with exponent γ ≈ 1, being consistent with PA. Asymmetries between

network formation processes of friend and enmity networks are explainable by e.g.

social penetration theory [25] or social balance theory, see below.

5.3. Two categories of enemies

Identifying negative social tie mechanics may be much more important for gaining

insight in social group dynamics than identifying mechanics of positive social ties

[25]. Our measurements provide first steps toward this direction.

In the plot of average neighbor degree knn versus degree k one observes two

classes, see dashed lines in Fig. 5 (f). The first class contains players with low degrees

(k < 50), all having an average neighbor degree of knn ≈ 100. The second class has

players with a degree of k > 100 and an average neighbor degree of knn ≈ 28. There

is a sharp transition between these classes. These observations suggest two distinct

mechanics of enemy formation at work:

(1) Vendetta – private enemies: A player who directly experiences a negative ac-

tion by another player is likely to immediately react by marking this agitator as

bThe same exponent of α = 0.6 has been measured for LinkedIn [27], a social networking site for
professional contacts.
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enemy. In this scenario, a dyadic vendetta without involvement of other play-

ers takes place. Due to the absence of long-lasting repercussions on real-life

reputation, negative dyadic behavior in online environments might be artifi-

cially inflated. For example, studies on the collaborative online encyclopedia

Wikipedia have shown extended negative phenomena such as vandalism and

so-called edit wars, i.e. repeated edits and reverts between pairs of editors or

pairs of editor groups representing opposing opinions [47].

(2) Volksfeind – public enemies: Some players display a destructive personality [9],

taking pleasure in destroying other players’ work. Anonymity of the internet

facilitates this behavior due to lack of real-world social repercussions. For this

reason these few troublemakers tend to cause a lot of misdoings to a big num-

ber of players. After such an individual is identified by the community, she

may receive pre-emptive enemy markings, either by friends of offended friends

or by otherwise non-involved players. This destructive behavior and the indi-

rect marking mechanism leads to the emergence of a few “public enemies”, i.e.

players marked as enemy by a huge number of others.

As a counterpoint to the somewhat vague situation of how far negative behavior

might deviate in online environments from negative behavior in offline environments,

in the following sections we provide empirical evidence for several well-known hy-

potheses in social science concerning positive and communication behavior.

5.4. Confirmation of the weak ties hypothesis

A long-standing proposition in sociology, the weak ties hypothesis, builds upon the

assumption that “the degree of overlap of two individual’s friendship networks varies

directly with the strength of their tie to one another” [15]. Weak ties (e.g. casual
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Fig. 8. The 16 classes of triads and their ids. The transition id 6 → id 13 represents one example

for triadic closure. (following [42])

acquaintanceships) are assumed to be strong in the sense that they weakly link com-

munities characterized by strong ties (standing for e.g. good friendships). Strong

ties correspond to redundant connections within communities. As an intuitive no-

tion of strength of an interpersonal tie, Granovetter mentions “the amount of time,

the emotional intensity, the intimacy (mutual confiding), and the reciprocal services

which characterize the tie”. These hypotheses can be tested by examining the mea-

sured function of overlap [33] versus PM weight, O(w), as well as overlap versus

link betweenness centrality [13], O(b). For a definition see [42]. Intuitively, the for-

mer should be increasing, the latter decreasing. In mobile phone call networks [33]

exactly this behavior was reported. More quantitatively, our data set suggests an

approximate cube root law and an inverse square root law relating the fundamental

network parameters betweenness and link-weight to overlap [42], see Fig. 7:

O(w) ∼ 3
√
w and O(b) ∼ 1√

b
(1)

Further tests on other large-scale communication networks, are needed to determine

if these data-derived “social laws”, eq. (1), describe universal patterns of human

communication.
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5.5. Confirmation of triadic closure

Triads are 3-node subgraphs. In directed graphs there exist 16 classes [17], Fig. 8 (a).

The triad significance profile (TSP) of a given network reveals which of these classes

are over (under) represented with respect to a random null-model [31]. The Z-score

quantifies the degree of overrepresentation of a triad class: positive (negative) Z-

score means over (under) representation. The TSP can be used to test the triadic

closure hypothesis [15], stating that within a social network of positive ties (e.g.

friendships) triad class 6 should have the smallest Z-score whereas class 13 should

have the highest. Class 6 is a “frustrated” state where one person has two friends,

but these friends do not know each other; class 13 is the state where all three are

friends. The phenomenon of triadic closure [35] states that individuals are driven

to fill the “hole” in triad class 6. More generally, if we focus on completeness,

i.e. whether a hole exists or not, we expect negative Z-score of the incomplete triad

classes 1–6 and positive Z-score of the complete triad classes 7–13. We find excellent

empirical agreement with Granovetter’s prediction for friend and PM networks:

triad 6 has minimal, class 13 maximal Z-score, Fig. 9. Our findings further confirm

the TSPs of the superfamily of social and hyperlink networks found in [31] and

other social networks [16]. So-far triad dynamics on networks of negative ties has not

been measured on large scales. Following similar social balance arguments we expect

reversed roles of completeness: instead of the absence of a completing third link, its

presence should cause frustration. Hence in enemy networks triad classes 1–6 should

be overrepresented, triad classes 7–13 underrepresented. We observe confirmation of

this “mirrored” hypothesis: most Z-scores in enemy networks have opposite signs of

those in friend networks; the deviations (ids 4, 9, 11) reveal interesting peculiarities.

Explicit evidence for triadic closure can be provided by directly counting transi-

tions between triads. Entries in the 13×13 matrix K give the number of transitions
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Fig. 10. Matrix K of empirical 50-day transition counts between triad classes in friend networks.

Blue squares mark average transition counts ≥ 100. Crosses mark transitions which never occured.
Circles point out the asymmetry of transitions between triad classes 6 and 13. (following [42])

from one triad to another within a time interval of 50 days, here in the friend net-

works, Fig. 10. According to the hypothesis of triadic closure, K6,13 should contain

high values,while the other way K13,6 is suppressed. We find that this is the case,

K6,13 = 306 > 23 = K13,6. In general, we observe incomplete → complete tran-

sitions (upper right sector in K) between connected triad classes than vice versa

(lower left in K). Transition rates could be essential for model builders [1]. Due

to lack of data, underlying parameters for agent based models so-far could only be

assumed.

5.6. Multiplexity and confirmation of social balance

In Ref. [40] we extend the analysis of three types of networks (PMs, friends, enemies)

with three additional network types. In total we study six network types, three

having a positive connotation (communication, friendship, trade), and three with

a negative connotation (enmity, attack, bounty). The observation of a heavy tail

in the degree distribution of the enmity network, see Fig. 5 (b), is extended and

systematic deviations between positive and negative tie networks can be found: In

general, negative [positive] tie networks display [no] heavy tails, much lower [higher]

reciprocity (fraction of reciprocated links), and a lower [higher] clustering coefficient

C.

We proceed to study the social system following a multiplex viewpoint [44]. In

this approach, the set of all networks defines the Multiplex network, in which the

nodes (individuals) can be connected by different types of links [44]. This evolving

and highly non-trivial object can provide essential insights into the organization

principles of a society, and is useful for testing further sociological hypotheses.

In the following we focus only on the multiplex sub-network made up of friend

and enemy relations and assign a +(-) sign to a friendship (enmity) link. Triads
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Fig. 11. The four different types of complete triads in the signed multiplex network of friendships

and enmities are + + +, + + −, + − −, − − −. B and U stand for balanced and unbalanced
triads, according to social balance theory. The N∆ values show the observed counts, Nrand

∆ are

the expected numbers in the null model. Balanced triads are indeed overrepresented (Z-scores 71

and 47), and the unbalanced triad + +− highly underrepresented. The −−− triad is much less
underrepresented (Z-score -5) than + +− (Z-Score -112). (following [40])

within this signed network are positive if the product of its links is positive (‘the

friend of my friend is my friend’ or ‘the enemy of my enemy is my friend’) and

negative otherwise (‘the friend of my enemy is my friend’ or ‘the enemy of my

enemy is my enemy’). We perform a large-scale test of social balance, a sociological

hypothesis which goes back to the 1940’s [18] and claims that positive triads are

‘balanced’ while negative triads are ‘unbalanced’ [7].

For testing social balance, we count all complete triads (being either of type

+ + +, + + −, + − − or − − −) in the signed network, N∆, and compare these

numbers to the expected number N rand
∆ of triads in the null model which fixes the

topology but randomly reshuffles the signs of the links. Figure 11 shows the values

and corresponding Z-scores in the last row, measuring the significance of over- or

underrepresentations. Indeed we measure highly overrepresented positive triads and

a very significant underrepresentation of the negative ++− triad. The negative triad

−−− (‘enemy of my enemy is my enemy’) is much less underrepresented.c Similar

results have been found in another study on large-scale signed networks in social

media [28].

6. Conclusion

This review of [40,41,42,43] demonstrates first attempts to transform traditionally

non-natural sciences into sciences which allow for quantifiable and falsifiable pre-

cNote that the random network of the null model is only random in the sense that signs of links

are randomized. This is different to a random network where the topology is reshuffled. In this

latter case the negative triads −−− are slightly overrepresented, which can be inferred from the
clustering coefficient [42].
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dictions. To sketch the enormous potential these new kind of scientific endeavors

yield for the future, we showed several hitherto inaccessible facts on large-scale so-

cial networks, confirmed two longstanding social balance hypotheses, and suggest

two predictions on “social laws”, eq. (1), relating local (overlap, weight) and global

(betweenness centrality) network measures in a quantitative manner.

The key ingredient in these attempts is to overcome the tremendous data re-

quirements needed for an experimental approach to complex systems. There is little

doubt that data-driven, quantitative methods of measuring and analyzing collec-

tive human behavior in large-scale “social laboratories” will greatly accelerate the

progress of social science. Given joint efforts of scientists and game designers, vir-

tual worlds such as Pardus which attract hundreds of thousands of players, are

relatively easy to set up for specific research questions. Basically any study of ag-

gregate human phenomena can be carried out: from behavioral economics, origin

of cooperation and ethical behavior to the dynamics of conflict, war and terror-

ism. New insights may lead to unforeseen impacts on managing human-induced

crises. It remains an open question to which extent social behavior in real soci-

ety deviates from behavior of humans in virtual societies. Only continued efforts

on high-frequency and large-scale studies will eventually show which of the above

findings can be referred to as “universal”.
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