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S1. ACTIVITY OF INHABITANTS IN THE ONLINE SOCIETY OF PARDUS

Pardus (www.pardus.at) is a browser-based Massive Multiplayer Online Game (MMOG) in a science-fiction setting,
online since September 2004. Every player owns an account with up to one character per game universe. A character
is a pilot owning a spacecraft with a certain cargo capacity, roaming the virtual universe trading commodities,
socializing, and much more, ‘to gain wealth and fame in space’ (http://www.pardus.at/index.php?section=about).
The main component of Pardus consists of trade with a society of players heavily driven by social factors such as
friendship, cooperation or competition [1, 2]. There is no explicit ‘winning’ in Pardus as there is no inherent set of
goals. Pardus is a virtual world whose gameplay is based on socializing and role-playing, with interaction between
players and non-player characters as its core elements [3].

Space in Pardus is two-dimensional. There are three topologically identical but independent game universes.
Between universes it is impossible to move, trade, or exchange game money. A universe is divided into 400 sectors,
each sector consisting of 15× 15 fields on average. Fields are the smallest units of space and are displayed as square
images in-game. They form a square grid on which continuous movement is possible by clicking on the desired
destination field within the space chart. This chart is a 7 × 7 fields cut-out of the universe visible to every player
centred on their current position. A sector’s boundary is impenetrable; moving between nearby sectors is possible
only by tunneling through field objects called wormholes. Moving between sectors which are not close-by on the
universe map is possible via field objects called X-holes and Y-holes, which are equivalent to wormholes but require
a higher cost of action points to traverse (see below). Sectors are organized in clusters, composed on average of 20
neighbouring sectors. The typical spatial range of activities of a character is usually confined to one cluster for several
weeks or longer. For more details on player interaction and means of movement in Pardus see [1, 2].
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Supplementary Figure 1. Average daily jump distance versus average daily activity as measured in Action Points (APs) spent,
for each player. Circles and error bars are binned averages with standard deviations. The green line is a least-squares fit,
making a trend visible between mobility and activity. High activity is necessary, but not sufficient, for high mobility: in order
to have a high mobility, a player needs to spend many APs (there are no data points in the top left part), but there exists a
number of players with low mobility who spend a high number of APs (there are data points in the lower right part).

Every game action carried out by a player (trade, movement, etc.), except for communication activities (using the
game’s chat channels, writing messages, posting in the game’s forums), costs a certain amount of action points (APs).
These points can not exceed a maximum value of 5000 or slightly more (different characters can have slightly different
maximum AP values, but in a neglectable order). For characters owning less APs than their maximum, every 6
minutes 24 APs are automatically regenerated, i.e. 5760 APs per day. Once a player’s character is out of APs, she
has to wait to be able to play on. As a result the typical Pardus player logs in once a day to spend all her APs on
several activities within a few minutes (for each character/universe). This makes APs, the game’s unit of time, the
most valuable factor: those players who use their APs most efficiently can experience the fastest progress or earn the
highest profits. Note that it is up to the player to spend (or not spend) her daily APs gained, and distribute them
freely on any of the possible types of AP-consuming activities. In a rough estimation, it takes around 1, 500 APs to
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traverse a typical cluster, and approximately 10, 000 (around 2 days worth of APs) to traverse the whole universe.
Figure 1 shows the average daily jump distance versus the average daily number of APs spent for each player. The

number of APs used per day is distributed heterogeneously, i.e. some players are much more active than others. In
general, the more APs a player uses, the more she travels. However, high activity is necessary but not sufficient for
high mobility: in order to travel far, a player needs to spend many APs (corresponding to a lack of data points in the
top left part of the figure), but there exists a number of players with low mobility who spend a high number of APs
(there exist data points in the lower right part of the figure).

Another quantity which indicates the extent of activity in mobility is the average waiting time ∆ t of a single player,
i.e. how many days a single player stays on a sector on average. The cumulative distribution of these average waiting
times of all players, Supplementary Fig. 2, displays a power law with slope −1, showing further the heterogeneity of
player activity in respect to mobility, motivating the transformation from real-time t to jump-time τ in the main text
for determining the distribution of first return times P←↩(τ).
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Supplementary Figure 2. Cumulative distribution of average waiting times ∆ t of single players. The dashed line is a power law
with slope −1, which fits well the distribution. The fat-tailed nature of this distribution shows the heterogeneity in movement
behaviour of players.

Supplementary Fig. 3 further shows the distribution of occupation probabilities, averaged over the distributions of
all single players, ordered by rank. Single players may have different locations which they prefer, however the aver-
aged distribution over these single, rank-ordered occupation probabilities shows the common pattern of significantly
prefering the stay in certain locations over other locations.

S2. DATASET DESCRIPTION

We focus on one of the three Pardus universes, Artemis, because complete information from the beginning of this
universe is available, and there exists a large number of players due to Artemis being a free-to-play universe [1, 2].
To make sure we only consider active players, we select all players who exist in the game between the days 200 and
1200. We discard the first 200 days because social networks between players of Pardus have shown aging effects in
the beginning of the universe, i.e. there seems to exists a transient phase in the development of the society, possibly
affecting mobility, which we would like to avoid considering [1]. This cut selects 1458 players active over a time-period
of 1000 days. The field-ID (position within a sector) of these players is logged every day at 05:35 GMT. From these
field-IDs, we select the corresponding sector-IDs, i.e. the player positions on the nodes of the universe network, leaving
us with a 1458×1000 mobility matrix containing 1458 sequences each consisting of 1000 sector-IDs. Note that we use
daily snapshots of position data since we are interested in the long-time mobility and not in the detailed paths the
players take during the typically few minutes of their daily navigations. The effects of this ‘systematic coarse-graining’
seem tame compared to biases occurring for example in mobile phone data, where location information is usually only
available at the heterogeneously distributed times when a mobile phone is used, and locations, hence distances, have
to be triangulated via heterogeneously scattered mobile phone towers [4]. These issues inherent in previously studied
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Supplementary Figure 3. Distribution of occupation probabilities, averaged over the distributions of all single players, ordered
by rank. The dashed line is a power law with slope −1.4, which fits well the distribution. The fat-tailed nature of this
distribution shows how players have clear preferences to stay much longer on or to visit much more frequently certain locations
than others.

mobile phone data may become resolved in future studies, considering recent disclosures that exact location data
(GPS) is constantly recorded by a number of mobile phone devices [5].

S3. UNIVERSE PROPERTIES

Topologically, the universe network is sparse, displaying an average degree of k̄ = 2.9 with N = 400 nodes and
K = 1160 links. It is highly clustered (clustering coefficient C = 0.089, which is 12 times larger than Cr, the average
clustering coefficient for corresponding random networks, i.e. networks having the same number of nodes and the
same average degree as the universe network), but is not small-world [6]: the characteristic path length L̄ = 11.89 is
more than twice Lr, the average path length on a random graph with the same number of nodes [7] and the same
average connectivity, and relative to the number of nodes the diameter dmax = 27 is large. Excluding X-hole and
Y-hole links, the universe is a planar network, i.e. it has no intersecting links. In this sense it is similar to Euclidean
networks such as street networks, with the difference that the length of links has no effect in Pardus. Locally, the
universe is lattice-like, which is reflected in the relatively high local efficiency Eloc = 0.80 [8] and the narrow degree
distribution (almost all sectors have degree 2, 3, or 4).

Besides the clusters, which are defined externally, there is the possibility for players to build obstacles called ‘military
outposts’ blocking almost any region of space from being entered by single or groups of other players. This option adds
player-driven ‘political borders’ to the natural ones, just as borders of nations often constitute significant limitations
to mobility of human beings. Such player-built obstacles can be taken down by other players through the use of
(usually organized) hostile force. Considering the political dynamics of military outposts is beyond the scope of this
article. Note, however, that often groups of players construct military outposts at the borders of clusters, possibly
further adding to the mobility-hindering effect of clusters quantified in the main text.

S4. COMMUNITY DETECTION

Since the Pardus universe is divided in a number of clusters, defining political, independent units in the game
universe, it is reasonable to expect (and is actually shown in the main text) that the mobility patterns of players are
influenced by such borders. At the same time, the topology of the Pardus universe itself might affect the mobility
patterns. In order to investigate the importance of these two elements, one needs to compare the topological modules
that can be extracted from the adjacency matrix A or distance matrix D, with the dynamical communities emerging
from the collective movement behaviour of players.
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N 400
K 1160
k̄ 2.9
C 0.089

C/Cr 12.33
L 11.89

L/Lr 2.11
Eloc 0.80
Eglob 0.03
dmax 27

Supplementary Table I. Network properties of the Pardus universe: number of nodes N , number of (undirected) links K,
average degree k̄, clustering coefficient C, clustering coefficient to corresponding coefficient of random graph C/Cr, average
geodesic L, average geodesic to corresponding average geodesic of random graph L/Lr, local efficiency Eloc, global efficiency
Eglob, diameter dmax.

.

At the sector level, the Pardus universe is a directed weighted network with L = 1160 links and N = 400 nodes.
The majority of links are wormholes (∼ 95%), mutual links that connect nearby nodes (see Fig. 1 in the main
text) and have a small traveling cost (in terms of APs). The long-range links in Fig. 1 in the main text instead
represent X-holes and Y-holes. Players moving along such links incur significantly higher traveling costs than in
the case of wormholes. Since X/Y-holes may be only scarcely used in-game, in addition to studying the complete
directed weighted adjacency matrix, A, we also study the adjacency matrix Awh where X/Y-holes were removed,
yielding a symmetric and unweighted network. Finally, we consider the weighted network Dinv, defined element-wise
as dij = d(i, j)−1 ∀ i 6= j and dii = 0 ∀i, where d(i, j) is the shortest path distance on the Pardus network.

The player dynamics was studied at the aggregate level through the transition count matrix M and the normalized
transition matrix Π. Each element mij of M corresponds to the total number of times a player was found at position i
at a time t and at position j at time t+ 1. The transition matrix Π = (πij) is obtained by row-normalizing M so that
πij =

mij∑
l mil

. Hence, for all rows i,
∑

j πij = 1 and Π is a well-defined probability matrix for the transitions between

pair of nodes in the network. Notice that for both M and Π the diagonal elements can be significantly different from
zero and therefore the resulting networks display self-loops. Moreover, both matrices M and Π correspond to directed,
weighted networks, and therefore can be thought as representing flows across the networks. For completeness, we also
define the symmetrized versions of the matrices above, namely the symmetrized jump matrix M symm = (M +MT)/2,
Π and the symmetrized transition matrix Πsymm = (Π + ΠT)/2. The corresponding weighted networks are undirected
and represent a first coarse-graining of the information contained in the dynamical flows. It is thus interesting to
compare these two to understand how much information is lost in the coarse-graining.

We performed community detection algorithms by optimizing modularity [9, 10]. To ensure consistency, we checked
the results under different heuristics and repeated detections [11, 12]. Figure 4 shows the communities extracted
from the M , M symm, Π and Πsymm matrices. The coloured hulls are included for comparison and indicate the Pardus
cluster to which each sector belongs. For comparison, in figure 5 we plot the communities obtained from the topological
quantities, namely the directed weighted adjacency matrix A, the undirected unweighted matrix Awh and the inverse
distance matrix Dinv. One can easily see that the communities extracted from the transition matrices appear to
reproduce much better the cluster structure as opposed to the topological communities.

Notice also that the partitions obtained for the dynamical transition matrices contain communities composed of a
single node. Although unusual in community detection, this result is consistent with the mobility patterns. In fact,
we measure the positions of players at the same time every day. Then, the presence of non zero values on the diagonal
of M , M symm, Π and Πsymm simply means that there is a positive probability for a player to be found again on the
same node after 24 hours, implying that the player either stayed still on the node or traveled but came back to its
original position within 24 hours. These self-loops are responsible for the presence of single-node communities in the
dynamical matrices and for their absence in the topological ones, where there are no self-loops.
We find a different number of communities for different matrices, making it hard to come to a conclusion regarding

which one is the closest to the Pardus cluster structure. To quantify the relative goodness of the partitions obtained
from the various matrices, we calculate three measures of clustering similarity: the Fowlkes and Mallows index F
[13], the Rand’s criterion R [14] and the normalized information variation (NVI) [15]. Consider a set of nodes T of
cardinality n and two partitions C and C′ of T , then the set of all unordered pairs of elements of T is the union of
the sets [16, 17]:

t11 is the set of pairs the same community under C and C′;
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Supplementary Figure 4. Extracting communities from mobility patterns. Communities found for (a) the jump matrix M ,
(b) the symmetrized jump matrix M symm = (M + MT)/2, (c) the transition matrix Π and (d) the symmetrized transition
matrix Πsymm = (Π + ΠT)/2. Different node colours represent the different communities found, while the 20 different colour-
shaded areas indicate the predefined socio-economic clusters as in Fig. 1 of the main text. The communities found through the
information of motions reproduces well the bulk of the Pardus cluster structure, with a few exceptions along borders where
some nodes are assigned to wrong clusters. The Fowlkes and Mallows index F is close to 1 for all detected partitions, reflecting
the good match. For more measures, see Supplementary Table II.

t01 is the set of pairs not in the same community under C but under the same community in C′;

t10 is the set of pairs in the same community under C but not under the same community in C′;

t00 is the set of pairs not in the same community under C and C′;

and n11, n01, n10, n00 are their respective cardinalities (and n11 +n01 +n10 +n00 = n(n−1)/2). The F and R indices
are then given by:

F =
n11√

(n11 + n10)(n11 + n01)
R =

2(n11 + n00)

n(n− 1)
(1)

which are essentially two ways of quantifying how well the partitions match pairs of nodes. Therefore a perfect match
between two partitions will have F ,R = 1. The Variation of Information (VI) is a measure based on information
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Matrix Network Properties ncomm F R NVI
Clusters — 20 1 1 0
A directed, unweighted 18 0.678 0.963 0.179
Awh undirected unweighted 17 0.655 0.957 0.180
Dinv directed, weighted 6 0.489 0.864 0.271
M directed, weighted 23 0.963 0.996 0.025
M symm symmetrized, weighted 22 0.957 0.995 0.026
Π directed, weighted 14 0.812 0.973 0.075
Πsymm symmetrized, weighted 19 0.999 0.993 0.036

Supplementary Table II. Overview of community detection results for the studied matrices. From left to right, the columns
correspond to: the studied matrix, the properties of the corresponding network, the number of communities found ncomm,
the scores for the Fowlkes-Mallows index F [13], the adjusted Rand’s criterion R [14] and, finally, the normalized information
variation (NVI) [15]. For reference, the first row contains the values for the Pardus cluster structure. The closer the indices F
and R are to 1, and the closer the NVI is to 0, the better a found partition matches the clusters. The values reported clearly
indicate that the Pardus cluster structure is faithfully reproduced by the player mobility. On the other hand, the topological,
non-dynamic properties (e.g. adjacency matrix, distance matrix) produce partitions that are very different from the Pardus
cluster structure.

theoretical concepts and represents the informational distance between two partitions. Therefore, if the VI is large,
the two partitions are very dissimilar. The VI of a partition is bounded by log2 n, hence it is possible to normalize it,
obtaining the Normalized Variation of Information (NVI ∈ (0, 1)):

NVI(C, C′) =
VI(C, C′)

log2 n
(2)

where

VI(C, C′) = H(C) +H(C′)− 2I(C, C′) (3)

The terms in equation (3) are the entropy H(C) of partition C and the mutual information between two partitions
C and C′ [17]:

H(C) = −
k∑

i=1

P (i) log2 P (i) I(C, C′) =

k∑
i=1

l∑
j=1

P (i, j) log2

P (i, j)

P (i)P (j)
(4)

where P (i) = |Ci|
n is the probability that an element of T chosen at random belongs to community Ci ∈ C, and

P (i, j) =
|Ci

⋂
C′

j |
n the probability that an element belongs to Ci ∈ C and to C ′j ∈ C′.

Supplementary Table II reports the values obtained for the studied matrices. The values of the Fowlkes-Mallows and
Rand indices for the dynamical communities are much closer to 1 than the ones for the topological communities.
The result is confirmed also by the NVI values, where we measured very small values for the dynamical partitions,
indicating that player mobility follows closely the Pardus cluster structure. It could be argued that this similarity
emerges from the topological structure of the network. However, we also found a difference of almost one order of
magnitude between the dynamical and topological partitions and thus such hypothesis is not supported, that is the
topological properties (e.g. adjacency matrix, distance matrix) produce partitions that are very different from the
dynamical ones and the Pardus cluster one and cannot therefore be considered as the underlying mechanism of the
mobility patterns. Moreover, this result is robust under different measures of player movement, as shown by the
remarkable stability of the values of the clustering similarity measures for the other dynamical cases, M symm, Π and
Πsymm, which stay close to the ones obtained for M . Therefore, our conclusions cannot be considered an artifact of
the particular measure we adopted.



9

(a) (b)

(c)

Supplementary Figure 5. Extracting communities from topological information. Communities found for (a) the adjacency
matrix A, (b) the adjacency matrix Awh in which the X/Y-holes were removed yielding an undirected unweighted network,
and (c) the distance matrix Dinv. Different node colours represent the different communities found, while the 20 different
colour-shaded areas indicate the predefined socio-economic clusters as in Fig. 1 of the main text. The partitions obtained from
the adjacency matrices produce communities that cross over the borders between clusters and therefore do not recover the
clusters well. This is particularly evident in the case of Dinv where only 6 communities are found. The Fowlkes and Mallows
index F is not close to 1 for all detected partitions, reflecting the bad match. For more measures, see Supplementary Table II.
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