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Supplementary Note 1: Limitations and refinements for planning

Since we publish all our code as open source, arbitrary refinements are possible, expected, and encouraged in
future work, especially towards better applicability of our approach for concrete bicycle network planning. For
example, the CROW manual recommends a hierarchical network approach with a top-level bicycle highway
connecting the major neighborhoods, a medium-level “main cycle network”, and a low-level “basic infrastruc-
ture” [14]. In our process we only considered the medium level so far, but it is straightforward to place custom
links before or after the greedy triangulation which allows to create any desired hierarchy. To operationalize
CROW’s “adapted grid method” [14] even closer, a quadrangulation [81] could be implemented for grid-like
seed points and streets, especially for US cities [79], as well as the missing harmonization with other transport
layers. However, computational di�culties must be expected with quadrangulations since in general they are
not guaranteed to have a solution and are computationally less feasible [81].

Further, our approach does not consider bicycle network planning outside of built-up urban areas, which
is becoming increasingly pressing with the rise of a↵ordable e-bike technologies. This line of research is also
becoming more important due to large-scale bicycle planning initiatives such as Denmark’s infrastructure plan
for 2035, where 2-3 billion DKK are to be invested into national bicycle infrastructure, primarily into cycle
superhighways. The development of inter-urban, regional networks demands di↵erent considerations outside
the scope of our paper, from changed parameters or topology such as “ladder structures” [14] to accounting for
di↵erent regional stakeholders and investors.

The biggest limitation of our approach is the sole focus on retrofitting street networks for safe cycling.
This approach has some issues because it only considers on-street but no o↵-street bicycle infrastructure –
in particular, our algorithms ignore existing bicycle-only infrastructure such as Copenhagen’s Cykelslangen or
similar bicycle-only infrastructure in many parts of the Netherlands – but this issue is only relevant in such
well developed cycling environments and negligible in the vast majority of cities on the planet. The first
main problem is about low-density regions. Such regions, like most parts of the Netherlands, rightly prioritize
the development of o↵-street networks to keep cycle routes as far as possible from cars, avoiding intersecting
tra�c, thus making them attractive low-stress environments [14]. Therefore, although our approach is the
only feasible for high-density cities, in low-density urban environments a Dutch style o↵-street approach can
be argued to be more desirable than on-street networks. For example, although Copenhagen has a very well
developed on-street bicycle network with a high modal share for cycling, it is questionable 1) to which extent
such a cycling environment is low-stress, inclusive, and child-friendly, and 2) whether such on-street tracks are
literally cementing the “arrogant” car-centric distribution of mobility space that has indeed been reported in
Copenhagen [6]. Thus, a focus on building on-street networks possibly represents a lock-in into a path-dependent
city evolution that could complicate the transition to car-free cities, therefore being unsustainable in the long
term [2]. Second, an exclusion of o↵-street infrastructure also could exclude improved geometric solutions such
as Steiner trees/points [81]. Third, from a communication perspective, this approach comes with the risk of
anchoring automobile infrastructure as the default when in reality automobile transport is one of the most
unsustainable and possessive modes (in terms of public space demands) for cities [5] posing the biggest threat
to the lives of other road users [19]. For all these reasons, future research on bicycle network growth should
consider and prioritize o↵-street solutions where possible.

Our minimal requirements on data, making use of only the street network, could be seen as another limitation.
However, we follow this approach on purpose for our framework to be applicable to data-scarce environments,
and thus to a large part of the planet [41]: no lane widths, inclines, tra�c flows, etc. are needed to optimize
geometry. Further, even if we had for example cyclist flows available, how would we ensure they are a ground
truth for optimal infrastructure? Such flow data could have been influenced by inappropriately or suboptimally
developed cycling infrastructure and other biases. Thus, our research approach places itself on the right end of
the spectrum: Single city with complex/multiple data sets — Multiple cities with simple/few data sets.

Given that the struggle to implement more bicycle infrastructure is mostly a political one, it could be
argued that there might already be enough theoretical knowledge generated by cycling research. While there is
a political bottleneck, the questions of How to do provide more road space for cyclists at the cost of motorized
tra�c and of Why that is happening so slowly cannot be neglected. Our study shows that cycling research has
barely scratched the surface when it comes to understanding the underlying network e↵ects, given that network
percolation and its fundamental implication on network growth is one of the most basic findings of graph
theory dating back to the 1950s [36] but is not common knowledge in transport network planning – otherwise
it would be acknowledged in leading planning manuals such as CROW [14]. Last but not least, research and
politics are not independent: If cycling research is becoming “mainstream” and is accompanied by high-quality
visualizations, open source tools, and a compelling vision, it can create increased potential to reach the general
public and induce political change [5, 22, 68].
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Supplementary Note 2: Grid size and network coverage

The grid points in the grid seed network triangulation were chosen at a distance of a4 = 1707m ensuring full
coverage of the city when rmax = 500m is assumed as a reasonable maximum distance (around 5 minutes of
walking). The proof for this coverage comes from the fact that the right triangle with sides of lengths a4, a4 and
p
2a4 is the triangle that emerges in the triangulation, together with its inradius equation rmax = a4+a4�

p
2a4

2 .
Solving for a4 yields a4 = 2

2�
p
2
rmax ⇡ 3.41rmax. Comparing this argumentation to a square grid, which is the

network geometry suggested by the CROW manual, a maximum distance of rmax = 500m would correspond to
a grid length of a⇤ = 2rmax = 1000m. The grid size standard given by CROW for built-up areas is 300-500m.
If a similarly tightly covering mesh is desired, our grid triangulation would need to be run for a grid with half
to third of its grid length.

Instead of the maximum distance rmax, it is more useful for planning purposes to consider the average
distance ravg of a random point to the network. As we show in the calculations below, the average distance for
our choice a4 = 1707m corresponds to ravg = rmax/3 ⇡ 167m. For a square CROW grid of length 500m the
average distance would be ravg ⇡ 83m. These numbers are only crow flies distances and do not account for less
direct distances routed on concrete street or pedestrian networks – to account for street grid e↵ects all distance
values could be multiplied by up to

p
2. In other words, the e↵ective average distance to the network could be

closer to
p
2 · 167 ⇡ 236m than to 167m.

Calculation of average distance to the nearest side of a square

What is of interest to us is to calculate the average distance from a randomly selected interior point to the side
of the square closest to it. By subdividing the square into triangles by drawing the line segments connecting
each corner to the center, all points for which a given sides is the closest will be in the same sub triangle. From
there, we can integrate the distances to the closest side over each of these triangles, sum these values, and divide
by the total area of the square to get our desired result.

For a square with side length a⇤, if we were to align two of the with the axes, our center would be at (a⇤
2 , a⇤

2 ).
The lines that connect the corners to the center (the diagonals) would be given as follows, see Supplementary
Figure 1 (left):

f(x) = x

g(x) = �x+ a⇤.

First, by noting that all of our sub-triangles are congruent, isosceles triangles, we can further divide our
triangles along the altitudes from each side of the square to the center. This results in a new count of 8
congruent, isosceles triangles for which all interior points of each triangle are closest to the same side of the
square. For the triangles with sides on the x-axis, the distance from an interior point to the closest edge is the
point’s distance to the x-axis. As all of our triangles are congruent, we need to calculate one integral:

I =

Z a⇤/2

0

 Z f(x)

0
ydy

!
dx

Supplementary Figure 1: Square and triangle for network coverage calculations.
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Evaluating this integrals yields:

I =
a3⇤
48

.

Thus, the average distance from an interior point of the square to the nearest edge will be: I÷ a2
⇤
8 =

a3
⇤
48

8
a2
⇤
= a⇤

6 .

As such:

ravg =
1

6
a⇤

Calculation of average distance to the nearest side of an isosceles triangle

What is of interest to us is to calculate the average distance from a randomly selected interior point to the
side of the triangle closest to it. By finding the incenter of the circle (the point equidistant from all sides)
and subdividing the triangle by drawing the line segments connecting each corner to the incenter, all points for
which a given sides is the closest will be in the same triangle. From there, we can integrate the distances to the
closest side over each of these triangles, sum these values, and divide by the total area of the triangle to get our
desired result.

For a right isosceles triangle with side lengths a4, a4, and a4
p
2, the inradius is r = 2�

p
2

2 a4. As such, if
we were to align the sides that intersect at a right angle with the axes, our incenter would be at (r, r). The
lines that connect the corners to the incenter (and thus bisect each of the angles) would be given as follows, see
Supplementary Figure 1 (right):

f(x) = x

g(x) = �(1 +
p
2)x+ a4

h(x) = (1�
p
2)x� (1�

p
2)a4.

First, we can simplify the problem: by noting that as the triangle is isosceles, we can cut the triangle in half
along the line y = x and calculate our average distance over one of these halves of the triangle. We then take
the part of the sub-triangle for which the interior points are closest to hypotenuse, and rotating our coordinates
so that the hypotenuse is on the x-axis. By doing so, for both this triangle as well as the other sub-triangle, the
distance from an interior point to the closest edge is the point’s distance to the x-axis. We will also subdivide
the second triangle, but breaking it up along the altitude from the incenter to the edge. As such, our integrals
of interest are:

I1 =

Z r

0

 Z f(x)

0
ydy

!
dx

I2 =

Z a4

r

 Z h(x)

0
ydy

!
dx

I3 =

Z a4
p

2
2

0

 Z (
p
2�1)x

0
ydy

!
dx

where y = (
p
2 � 1)x is the line connecting (0, 0) to (a

p
2
2 , r). It is worth noting that the sub-triangles cor-

responding to I2 and I3 are congruent, and as such, these integrals will be equal. Evaluating these integrals
yields:

I1 =
1

48

⇣
2�

p
2
⌘3

a34

I2 =
1

24

⇣
3
p
2� 4

⌘
a34

I3 =
1

24

⇣
3
p
2� 4

⌘
a34.

Thus, the sum of these integrals will be: I1 + I2 + I3 = 1
24

�
2�

p
2
�
a34. Now, we divide by half of the area of

the triangle,
a2
4
4 . This yields:

ravg =
2�

p
2

6
a4
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City Lcar [km] Lbike [km] �bike Population Area [km2] Continent Density [Pop/km2]
Tokyo 26,293 339 504 37,977,000 8,547 Asia 4,443
Jakarta 11,797 4 15 34,540,000 3,225 Asia 10,710
Mumbai 3,983 2 1 23,355,000 546 Asia 42,775
Sao Paulo 17,029 250 127 22,046,000 2,707 S. America 8,144

Mexico City 15,056 247 63 20,996,000 2,072 N. America 10,133
Moscow 5,507 286 229 17,125,000 4,662 Europe 3,673

Buenos Aires 3,399 257 57 16,157,000 2,681 S. America 6,026
Karachi 20,272 0 1 14,835,000 945 Asia 15,698

Los Angeles 12,286 292 276 12,750,807 6,299 N. America 2,024
Paris 1,536 292 314 11,020,000 2,845 Europe 3,873

London 15,810 1,236 4,196 10,979,000 1,738 Europe 6,317
Bogota 6,788 471 179 9,464,000 492 S. America 19,236
Chicago 7,003 163 160 8,604,203 6,856 N. America 1,255
Luanda 1,878 0 0 8,417,000 894 Africa 9,415

Hong Kong 3,692 272 329 7,347,000 275 Asia 26,716
Singapore 4,502 470 249 5,745,000 518 Asia 11,091

Philadelphia 4,576 109 70 5,649,300 5,131 N. America 1,101
Houston 13,120 287 97 5,464,251 4,644 N. America 1,177
Toronto 6,275 299 183 5,429,524 2,287 N. America 2,374
Boston 1,744 124 86 4,688,346 5,325 N. America 880

Barcelona 1,412 217 79 4,588,000 1,075 Europe 4,268
Phoenix 9,537 341 107 4,219,697 3,196 N. America 1,320
Berlin 6,181 1,334 803 3,644,826 1,347 Europe 2,706

San Francisco 1,847 76 115 3,592,294 2,797 N. America 1,284
Montreal 5,687 362 165 3,519,595 1,546 N. America 2,277
Detroit 5,108 75 44 3,506,126 3,463 N. America 1,012

Birmingham 2,774 237 265 2,897,303 598 Europe 4,845
Rome 7,282 214 190 2,872,800 1,114 Europe 2,579

Greater Manchester 9,836 668 797 2,705,000 1,277 Europe 2,118
Tashkent 3,633 4 9 2,424,100 334 Asia 7,258
Leeds 3,290 247 425 1,901,934 487 Europe 3,905

Hamburg 4,349 858 885 1,841,179 755 Europe 2,439
Vienna 3,023 573 478 1,840,573 414 Europe 4,446
Warsaw 3,649 630 217 1,790,658 517 Europe 3,464
Budapest 4,507 210 206 1,752,286 525 Europe 3,338
Manhattan 972 152 77 1,628,706 87 N. America 18,721

Rabat 1,152 4 7 1,628,000 117 Africa 13,915
Munich 2,785 1,080 466 1,471,508 310 Europe 4,747

Ulaanbaatar 6,180 24 14 1,396,288 4,704 Asia 297
Milan 1,964 185 230 1,351,562 181 Europe 7,467

Cologne 2,720 764 427 1,085,664 405 Europe 2,681
Copenhagen 1,159 454 221 1,085,000 292 Europe 3,716
Amsterdam 1,770 718 288 1,031,000 219 Europe 4,708
Glasgow 2,088 147 189 985,290 142 Europe 6,939

Kathmandu 808 3 21 975,453 49 Asia 19,907
Marrakesh 1,860 2 3 928,850 143 Africa 6,495

Turin 1,643 171 100 870,952 130 Europe 6,700
Oslo 1,737 294 555 693,494 480 Europe 1,445

She�eld 2,017 103 233 685,368 368 Europe 1,862
Helsinki 1,572 1,299 506 642,045 715 Europe 898
Stuttgart 1,526 161 334 634,830 207 Europe 3,067
Shah Alam 3,079 57 15 584,340 290 Asia 2,015
Bradford 1,985 59 102 540,000 370 Europe 1,459
Lyon 653 62 116 516,092 48 Europe 10,752

Edinburgh 1,623 162 199 488,050 264 Europe 1,849
Tel Aviv 813 163 195 451,523 52 Asia 8,683
Zurich 764 64 330 434,008 87 Europe 4,989
Malmo 919 428 142 321,845 332 Europe 969

Santiago Centro 399 48 9 200,792 22 S. America 9,126
Bern 408 11 89 133,798 51 Europe 2,623
Delft 285 111 145 103,000 24 Europe 4,292
Bath 272 17 32 88,859 29 Europe 3,064

Supplementary Table 1: Cities and their urban parameters.
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Supplementary Figure 2: Synthetic versus real bicycle networks. Shown are all 6 combinations of growth strategies
(betweenness, closeness, random) with seed types (grid, rail).

Supplementary Figure 3: Comparison of directness definitions. The four di↵erent definitions of directness, see
Methods in the main text, averaged over all 62 cities for grid seeds. The plots show that numerical values vary only
insignificantly; the results are qualitatively identical for each definition. For the legend see Fig. 4 in the main text.
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Supplementary Figure 4: Streets: Change of network metrics with growing bicycle networks.
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Supplementary Figure 5: Change of network metrics with betweenness growth on rail station seeds. Shown
are the selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to
access these plots for all cities.
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Supplementary Figure 6: Change of network metrics with closeness growth on rail station seeds. Shown are
the selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to access
these plots for all cities.
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Supplementary Figure 7: Change of network metrics with random growth on rail station seeds. Shown are
the selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to access
these plots for all cities.
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Supplementary Figure 8: Change of network metrics with betweenness growth on grid seeds. Shown are the
selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to access
these plots for all cities.
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Supplementary Figure 9: Change of network metrics with closeness growth on grid seeds. Shown are the
selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to access
these plots for all cities.
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Supplementary Figure 10: Change of network metrics with random growth on grid seeds. Shown are the
selected cities Copenhagen, Boston, Mumbai, Tokyo. See Section Data availability in the main text for how to access
these plots for all cities.
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