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Fig. S1. Shareability shadow. Two-dimensional representation of city C, extruded to 
highlight the temporal dimension. The blue segment represents the trajectory T of 
a given trip. The extended cylinder surrounding it represents its shareability 
shadow s(T). For a trip to be shareable, its endpoints must belong to s(T) (which is 
the case for trips 0, 3 and 5), and at least one of them must belong to the darker 
part of the cylinder (only 3 and 5 satisfy this condition). Trip 2 is spatially 
compatible with T, but not temporally (it started too early). Trip 4 is neither 
spatially nor temporally compatible with T. This map was generated using 
MapBox and Adobe Photoshop CC (https://www.mapbox.com/ and 
http://www.adobe.com/products/photoshop.html).  
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Fig. S2. Projected shareability shadows. a, Forward sharing probability. Schema 
representing the different elements involved in the integration of A (t | tA, xA, yA). εΔ(rA(t)), 
Ξ(rA(t), yA), and Ξ(yA,xB) correspond respectively to the blue disk, the dark green 
rectangle, and the light green quadrilateral. b, Backward sharing probability. Schema 
representing the different elements involved in the backward integration of A’ (t | tA, xA, 
yA). Similarly, εΔ(rA(t)), Ξ(rA(t), yA), and Ξ(yA,xB) correspond respectively to the blue disk, 
the dark green rectangle, and the light green quadrilateral. 
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Fig. S3. Model accuracy. This log-lin plot assesses the accuracy of our mathematical 
model for shareability against real data for New York, San Francisco, Singapore and 
Vienna. The model provides an accurate estimate of the shareability in those cities, with 
R2 values respectively equal to 98.9%, 97.7%, 95.0% and 91.4%. Subplot: Errors. 
Absolute errors between model predictions and real data for the four cities considered in 
our study. 
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Fig. S4. Maps of the intersections used for trip filtering. Maps of the four different 
cities (SF – San Francisco, NY – New York, VI – Vienna, and SI – Singapore) for which 
we have data on taxi displacements with the considered intersections for trip matching 
overprinted using black dots. The San Francisco, Singapore and Vienna cases include the 
airport as it concentrates a relevant fraction of the total traffic. Background maps 
obtained from Open Street Map (27, http://www.openstreetmap.org/copyright). 
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Fig. S5. Evidence of Poisson trip generation. Hourly inter-event time distribution 
compared to an exponential distribution (which would correspond to purely Poisson 
distributed trips). Each line corresponds to a different hour of day and transparency has 
been applied to visualize the density of curves. 
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Fig. S6. Trip generation. A, Evolution of accumulated number of recorded trips with 
time. B, Quantile-quantile plot of its distribution compared to a Normal curve with R2 of 
the linear fit also shown.C~~, Standardized average daily. D, hourly time generation of 
trips for the datasets also displayed. 
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Fig. S7. Correlation between shareability and isolated nodes. Shareability can be 
accurately predicted using the fraction of isolated nodes in the shareability network. The 
plot shows the very good statistical correlation between fraction of isolated nodes (x axis) 
and shareability (y axis), with R2=0.99. Data from the New York, San Francisco, 
Singapore, and Vienna data sets. 
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Table S1. Taxi trip datasets and city characteristics. a, Ntaxis refers to the number of 
taxis present in the dataset and ρtaxis to the fraction of the entire taxi fleet it represents. T 
refers to the total number of recorded trips. Used UTM zones for projection in trip 
intersection matching are also shown. b, Average speed of vehicles (in km/h), area (in 
km2), average number (in trips/h) and spatiotemporal density (in trips/h/km2) of taxi trips, 
and L (dimensionless) for New York, San Francisco, Singapore and Vienna, with Δ = 
1/12 h. 
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Table S2. Similarity measures between the different curves. Opt. R2 was obtained 
using the optimal rescaling, and L(C). R2 using L(C). In both cases, the values are large, 
confirming the visual impression of a strong agreement between the rescaled curves. 
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Algorithm S1. Supersampling algorithm. Extension of the supersampling algorithm 

[17] for dynamic allocation in time. 
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Supplementary Text 

The shareability network of taxi trips 

The shareability curves reported in Figure 1 in the main text are obtained via the notion 

of shareability network defined in [16], which we report here for convenience. Each node 

of the shareability network represents a trip, and a link between nodes A and B is created 

if those two trips can be shared (where shareability obeys the rules described in 

Supplementary Equations). The study [16] is mostly focused on the case where at most 

two people share a ride. Computing the maximum shareability from a given network thus 

reduces to the standard problem of computing one of its maximum matchings (a 

matching is a set of edges without common vertices). We apply that same method to three 

other cities (San Francisco, Singapore and Vienna) to complement the New York results. 

As mentioned in the main text, the evolution of shareability with the number of available 

trips is of particular interest. In a given city and for a given number of trips N, we build 

multiple random subnetworks with N nodes, compute their maximum matching and 

define the shareability as the average size of those maximum matchings. This gives rise 

to curves representing the shareability as a function of the number of trips in each city. 

Since a higher value of Δ results in a denser shareability network [16], and since that 

same Δ is positively correlated to shareability, a positive correlation between shareability 

and the average node degree of the shareability network is very likely. Conversely, the 

average node degree is negatively correlated to the fraction of isolated nodes in the 

shareability network. Hence, one can expect a correlation between shareability S and 

fraction iso of isolated nodes in the network of the type  

 

S = a (1 – iso) + b. 

 

This correlation is consistently observed in the four data sets (Fig. S7) with an R2 = 0.991 

for a = 1.06114 and b = -0.0703398. The strong correlation between shareability and 

fraction of isolated nodes in the shareability network can be explained as follows. As λ 

increases, a Giant Connected Component (GCC) is rapidly formed in the shareability 

network, leading to a network composed of a large majority of trips in the GCC, and a 
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few isolated nodes. Since the average node degree in the GCC is very high (e.g., it is 

about 250 in New York, with Δ = 1/12 h), its maximum matching is likely to be a perfect 

matching (a perfect matching is a matching covering all nodes in the network), implying 

that shareability is well approximated by the fraction of nodes in the GCC. Since the 

nodes in the shareability network outside the GCC are isolated with overwhelming 

probability, the fraction of nodes in the GCC (and hence shareability) can be well 

predicted by the fraction of isolated nodes in the shareability network. This observation is 

especially important, since it relates shareability -- a quantity determined by the size of 

the maximum matching in the network -- to one of the network's simplest topological 

properties, the fraction of isolated nodes. It also suggests that non-shareable trips are 

likely to occur only at unpopular locations and/or unpopular times. 

 

R2 and rescaling of the shareability curves 

The quantity used in this paper to measure similarity between two curves is a classic 

version of the popular coefficient of determination, known as R2. Given two curves 

C1 := {(!!!, !!!),...,(!!
!, !!

!)} and C2 := {(!!!, !!!),…,(!!
! , !!

! )}, we start by defining a 

uniformly distributed set of points {x1,…, xk} in the segment [max(!!!, !!!), min(!!
!, !!

! )]. 

Both curves are then linearly interpolated to obtain two sets {(x1, !!!),...,(x1, !!
!)} and {(x1, 

!!!),…,(x1, !!
!)} representing the values of the curves we want to compare in x1,…, xk. This 

allows us to define 

!! !!,!! = 1−  2
!!! +  !!!

(!!! − !!!)!
!

!!!
 

where !!
! represents the variance of the set {!!,

! …,!!
! }. The classic R2 usually considers 

the variance of the data that needs to be calibrated. Here, for the sake of symmetry, we 

instead average the variance of both curves. Moreover, as long as k is large enough, its 

choice barely affects the R2 (in this paper, k = 1000). 

As mentioned throughout this paper, the shareability curves show a very similar shape, 

and nearly coincide when properly rescaled. The rescaling is applied to the independent 

variable and hence to the horizontal axis. In other words, if S(λ) stands for the 
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shareability corresponding to a given λ (the parameter representing the number of trips 

occurring per hour), the rescaled curve, for a constant scaling factor K, is SK(λ) := S(λ / 

K).  

For each curve, two rescalings were done. The first is the statistically optimal rescaling, 

where optimal is defined in the least squares sense: it aims at minimizing the R2 between 

the curves for two different cities. The values in Table S2 are defined by 

 

!"# !! !!,!! =  !"#
!!!

(!!(!!
! ! ,!!

! ! )), 

 

where S1(λ) and S2(λ) are the shareability curves for cities C1 and C2. By symmetry of R2, 

Opt. R2 is symmetrical as well. The second rescaling we performed simply corresponds to 

using K=L(C), as suggested by the dimensional analysis found in the Supplementary 

Equations. This procedure, which has no adjustable parameters, generates the curve 

SL(C)(λ), plotted for the four cities of interest in Figure 2. 

 



Supplementary Equations

1 General problem

The aim of this paper is to understand the laws governing urban ride sharing and to define a general

analytical model capturing their essential features. The model is designed to predict the probability

that an arbitrary ride can be shared, given the simple set of urban parameters described below.

Potentially shareable rides, called trips in the following, are characterized by their origin, destina-

tion and starting time. The model assumes that such a triplet uniquely defines a trajectory in the city,

and that the average velocity v of trips is specified as a system parameter. Whether any two trips can

be shared is determined by spatial and temporal constraints. More specifically, trips A and B can be

shared if there exists a route connecting the two origin and destination points such that:

a) on that route, each origin point precedes its corresponding destination point;

b) the two trips are overlapped (at least partially), not concatenated; and

c) the delays imposed on A and B due to sharing are smaller than some tolerable delay �, a

parameter of the ride sharing system.

Notice that there are exactly four possible routes satisfying conditions a) and b), depending on which

trip starts and ends first. The trips are considered shareable if, for one of them at least, condition c) is

fulfilled.

The parameters of interest to our study, as well as their qualitative impact on trip shareability,

are described below (Table S1 gives their observed values for the taxi systems of New York, San

Francisco, Singapore and Vienna):

– trip density � (in trips/h), which measures the availability of taxis or other potentially shareable

rides, and which is expressed as the average number of trips originating in the city per hour. Trip

density is both a parameter of the study (through super- and subsampling, see Methods) and a

fixed value (denoted �

f

) when considering the entire datasets of taxi trips. As mentioned in the

main text, a clear relationship is found2 between the trip density and the fraction of trips that

can be shared, with a fast increase of the shareability for larger trip density (up to a saturation

point).



– maximum delay � (in h), imposed on passengers sharing their ride. The higher the �, the larger

the tolerance for shareability, all other parameters being equal. Obviously, a higher shareability

is expected for increasing values of �.

– travel speed v(C) in city C (in km/h), assumed for simplicity to be constant in space and time

(i.e., in different parts of the city and at different times of day). Travel speed is also positively

correlated with shareability: other parameters being equal, higher speed results in the possibility

of covering a larger area within the delay bound �, and thus yields more sharing opportunities.

– city area |⌦(C)| (in km

2), where ⌦(C) denotes the 2D projection of the city. The area is

negatively correlated to shareability: all other parameters being equal, a city that is more spread

out will offer fewer sharing opportunities than a more compact city would.

2 Trip sharing model: overview

Having identified the key parameters influencing trip shareability, we now present a central concept

of our mathematical model: the notion of a shareability shadow. Assume that the starting times of

trips in the city are generated according to a time-dependent Poisson process (Fig. S5). The trips’

origins x and destinations y are then drawn from a four-dimensional probability distribution, denoted

⇢(x,y). For the sake of simplicity, we assume ⇢ to be independent of time, but our framework can

be generalized to time-varying distributions. At any instant t, an existing trip A defines a region of

“shareable” origin and destination points:

– Shareable origin points need to be close enough to the current position of A.

– Shareable destination points need to be compatible with the destination of A, so that A is not

forced to deviate too much from its course.

The probability that A can be shared is the probability of a trip to be generated at time t with start and

end points in those regions. For the sake of simplicity, the origin and destination regions are assumed

independent from one another and of simple shape, as shown in Figs. S2(a) and (b).

We formalize this framework below. It allows us to approximate the probability S that a trip can be

shared, given any spatiotemporal distribution of trip characteristics. The shareability S takes the form

of a five-dimensional (one time dimension, two spatial dimensions for the origin, and two more for



the destination) integral of the exponential of another five-dimensional integral. Its analytic evaluation

requires choosing a particular form for the spatiotemporal distribution ⇢. The following section is

dedicated to discussing that choice, and the properties we wish our model to encapsulate.

3 Fundamental properties and assumptions

As described in the main text and shown in Figure 1, the shareability curves for New York, San

Francisco, Singapore and Vienna have extremely similar shapes. After optimal rescaling, the curves

lie nearly on top of each other, with R

2 values exceeding 95.5%; see Figure 2 and Table S2.

The table also shows the similarity between the curves obtained when rescaling � into the dimen-

sionless quantity L = �v

2
�

3
/ |⌦|. Although this rescaling is not quite optimal, it has the advantage

of having no adjustable parameters, and in that sense can be regarded as universal. As discussed in

Section ??, the parameter L accounts in a natural way for the relevant differences between cities.

Indeed, putting aside microscopic effects induced by the road network structure, multiplying a city’s

linear dimensions by a constant µ (and hence its area by µ

2), while simultaneously multiplying the

average speed v in that city by the same constant, keeps L the same and thus should not affect the

city’s level of shareability.

Likewise, in the interest of prediction and generalization, the spatial distribution for trip genera-

tion should be as universal and independent from a city’s details as possible. In particular, using an

empirically determined function ⇢ is not necessary to obtain reasonable curves. We show in Section

1.8 that choosing trip origins uniformly in the city, and then destinations uniformly in a disk centered

at the origin, generates the required properties, and yields a good fit of the model to the measured

shareability curves.

4 Notation and definitions

We now describe our mathematical model for trip shareability. Let ⌦ be a convex compact subset of

R2, representing the city. Trips are uniquely characterized by their origin, destination, and starting

time. Formally, any trip A can be expressed as a triplet (x
A

,y

A

, t

A

), where x

A

2 ⌦ represents the

origin of the trip, y
A

2 ⌦ its destination and t

A

2 [0,1) its starting time. Our model assumes that,

once x
A

,y

A

and t

A

are known, the position of the vehicle and its arrival time tf
A

are fully determined.



In particular, for the sake of mathematical tractability, the trajectory is defined as a straight line joining

the origin x

A

to the destination y

A

, and the average velocity v of a trip is specified as a system

parameter. The arrival time at the destination can be easily estimated as tf
A

= t

A

+ ||y
A

� x

A

||/v ⌘

t

A

+ �

A

where ||x|| stands for the Euclidean norm of x (note that any other distance, e.g. the

Manhattan one, could be used here) and �

A

for the trip duration. This simple approach allows us to

formalize the delay condition for shareability of trips A and B: tf,SB
A

 t

f

A

+� and t

f,SA
B

 t

f

B

+�,

where t

f,SB
A

is the arrival time at destination of trip A when shared with B (similarly for trip B), and

� is a parameter of the ride sharing system, modeling the maximum delay tolerable to travelers.

Next, we assume that trips A(x
A

,y

A

, t

A

) are generated at random in ⌦ according to the following

rules:

– Starting times t
A

are defined as occurrences of a time-dependent Poisson process with rate �(t).

– Origin and destination are chosen according to a two-dimensional probability distribution ⇢(x

A

,y

A

)

independent of the starting time.

For a trip A(x

A

,y

A

, t

A

), the position r

A

(t) of the vehicle at time t is entirely determined by the

previous hypothesis, and we write it as r
A

(t) = x

A

+

yA�xA
�A

(t � t

A

) for any t 2 [t

A

, t

f

A

]. We also

define the quantity (useful in later derivations):

�

"1y"2 =

Z

"1

dx

0
Z

"2

dy

0
⇢(x

0
,y

0
), (1)

which is the probability a trip generated at a random time t has its origin in "1 ✓ ⌦ and destination in

"2 ✓ ⌦ (from now on, all the parameters of the system such as v will be omitted from the notations).

5 Probability that a random trip can be shared

Let us consider a trip A, starting at time t

A

. Once its origin x

A

and destination y

A

are chosen, its

duration �

A

is set as well. Three cases determine the shareability of that trip:

– either it is “backward” shareable because it can be paired with an earlier trip, an event whose

probability is written S
b

(x

A

,y

A

, t

A

) = 1�NS
b

(x

A

,y

A

, t

A

);

– or it cannot be shared with past trips, in which case it might be “forward” paired with future

trips generated in the interval [t
A

, t

A

+�

A

]. We let S
f

(x

A

,y

A

, t

A

) = 1 �NS
f

(x

A

,y

A

, t

A

)

denote the probability of that event;



– or it cannot be shared at all.

Thus the probability S
b

(t) for a random trip starting at time t to be shareable due to prior trips (or

identically with the subscript f for future trips) is

S
b

(t) =

Z

⌦2
S
b

(x,y, t)⇢(x,y)dxdy = 1�
Z

⌦2
NS

b

(x,y, t)⇢(x,y)dxdy.

And since the events of the random trip being shareable with prior or later trips are independent, the

total probability becomes

S(t) = S
b

(t) + (1� S
b

(t))S
f

(t) = 1�NS
b

(t)NS
f

(t),

where the notations NS
b

(t) and NS
f

(t) are self-explanatory.

5.1 Forward probability NS
f

During the time interval [t
A

, t

f

A

] corresponding to trip A, the number N of generated trips follows an

exponential distribution with parameter given by ⇤(t

A

,�

A

) =

R
tA+�A

tA
�(t) dt (this stems directly

from the definition of a Poisson distribution).

Let p(x
A

,y

A

, t

A

) denote the probability that trip A can be shared with a random trip gener-

ated during [t

A

, t

f

A

]. The probability of A not to be shareable with any of those N trips is (1 �

p(x

A

,y

A

, t

A

))

N , so the average probability NS
f

of trip A not being shared is therefore

NS
f

(t

A

) =

Z

⌦

Z

⌦
dx

A

dy

A

⇢(x

A

,y

A

)

X

N�0

e

�⇤⇤
N

N !

(1� p(x

A

,y

A

, t

A

))

N

.

One can rewrite the previous expression to reach the final equation of the formal problem:

NS
f

(t

A

) =

Z

⌦

Z

⌦
dx

A

dy

A

⇢(x

A

,y

A

) exp {�⇤(t

A

,�

A

)p(x

A

,y

A

, t

A

), } ⌘
D
e

�f(xA,yA,tA)
E

(2)

where we have defined f(x

A

,y

A

, t

A

) ⌘ ⇤(t

A

,�

A

)p(x

A

,y

A

, t

A

). We observe that the integral takes

the form of the expected value of a negative exponential, and its argument is the average number

of trips generated during the duration of A that can be shared with A. Note also that, as expected,

0  NS
f

 1.

The following elements of the problem can be observed in equation (2):

– Duration �

A

= ||y
A

� x

A

||/v of trip A, and, consequently, trip length ||y
A

� x

A

||.



– Average number of trips generated during trip A, ⇤(t
A

,�

A

) =

R
tA+�A

tA
�(t)dt.

– Probability ⇢(x,y) of a trip to go from point x to point y.

– Probability of a trip starting in the interval [t
A

, t

A

+�

A

] to be shareable with A, p(x
A

,y

A

, t

A

).

These elements reflect the assumptions we have made:

– Trips are generated throughout the city according to a time-dependent Poisson process with rate

�(t).

– The spatial generation of trips is characterized by a two-dimensional distribution ⇢(x,y).

– Any trip with given start and end points defines a deterministic trajectory.

Let us now further develop p(x

A

,y

A

, t

A

) by taking into account the Poisson nature of the trip gen-

eration process. Conditioning on N trips being generated, those N trips are independent events, with

starting times distributed in [t

A

, t

f

A

] according to the probability density function �(t)/⇤(t

A

,�

A

).

This yields

p(x

A

,y

A

, t

A

) =

Z
tA+�A

tA

�(t)

⇤(t

A

,�

A

)

A(t|t
A

,x

A

,y

A

)dt, (3)

with A the probability of a trip X(x,y, t) generated at time t 2 [t

A

, t

A

+ �

A

] to be shareable with

A. For that to happen, two conditions, represented on Fig. S2(a), must be satisfied:

– The starting point of X must be close enough to r

A

(t), which represents the position of vehicle

A on its trajectory at time t. How close to r

A

(t) that X should be depends on �, the delay

tolerance of the sharing system, as indicated by x 2 "

�
(r

A

(t)).

– The endpoint of X must be compatible with the trajectory of A. This can mean two things.

Either X ends before A, in which case y must belong to a region joining r

A

(t) to y

A

; if so,

let ⌅(r
A

(t),y

A

) denote that region. Otherwise, X ends after A, in which case y must belong

to a region surrounding the extension of A’s trajectory towards the city’s boundaries. We let

x

B

denote the intersection of A’s trajectory with the boundary. In that case the region can be

written as ⌅(y
A

,x

B

).

Those regions form what we call a shareability shadow (Fig. S1). Fig. S2(a) shows the shape

we chose to give them (properly defined in Section 1.8). Moreover, ⌅(r
A

(t),y

A

) and ⌅(y

A

,x

B

) are



disjoint, so the events y 2 ⌅(r

A

(t),y

A

) and y 2 ⌅(y

A

,x

B

) are exclusive. Using the notation defined

in (1), the probability A of X starting in "

�
(r

A

(t)) and ending in ⌅(r

A

(t),y

A

) or ⌅(y
A

,x

B

) can be

written as

A(t|t
A

,x

A

,y

A

) = �

"

�(rA(t))y⌅(rA(t),yA) + �

"

�(rA(t))y⌅(yA,xB) = �

"

�(rA(t))y⌅(rA(t),xB),

where ⌅(r

A

(t),x

B

) corresponds to the union of the green areas in Fig. S2(a).

5.2 Backward probability S
b

In the backward case, we study the probability trip A can be shared with a trip prior to it. To do so,

we use a procedure analogous to the above calculations. Let us define the following quantities:

– �

B

= ||ˆx
B

� x

A

||/v, the time needed to reach the border of the city (ˆx
B

being the point

opposite to x

B

) in a straight line going “backwards” in the direction of trip A (see Fig. S2(b)).

Only trips starting in [t

A

��

B

, t

A

] can potentially be shared with A.

– ⇤

0
(t

A

,�

B

) =

R
tA

tA��B
�(t)dt, the average number of trips generated during the time interval

[t

A

��

B

, t

A

].

– r

A

(t), the virtual position on A’s trajectory of a vehicle at time t 2 [t

A

��

B

, t

A

].

– the probability of any past trip to be shareable with A:

p

0
(x

A

,y

A

, t

A

) =

Z
tA

tA��B

�(t)

⇤

0
(t

A

,�

B

)

A0
(t|t

A

,x

A

,y

A

)dt,

where

A0
(t|t

A

,x

A

,y

A

) = �

"

�(rA(t))y⌅(xA,yA) + �

"

�(rA(t))y⌅(yA,xB) = �

"

�(rA(t))y⌅(xA,xB)

is the probability a random trip X generated at time t 2 [t

A

� �

B

, t

A

] can be shared with A.

Here "

�
(r

A

(t)) is the region surrounding r

A

(t) where X needs to start for it to be shareable

with A, while ⌅(x

A

,x

B

) is the region where X needs to end. It can be split into two regions,

⌅(x

A

, y

A

) (resp. ⌅(y

A

,

ˆ

x

B

)) standing for X ending before (resp. after) A ends. Fig. S2(b)

shows possible shapes for those three regions.

After some algebra, we obtain

NS
b

(t

A

) =

Z

⌦

Z

⌦
dx

A

dy

A

⇢(x

A

,y

A

) exp

�
�⇤

0
(t

A

,�

B

)p

0
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, t
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.

The general setting of the model ends here. We now apply the assumptions described in Section 3.



6 Uniform trip generation in time

Let us assume uniform trip generation in time. (This approximation is reasonable if �(t) varies on

a time scale longer than a typical trip time.) We have �(t) = � and thus ⇤(t

A

,�

A

) = ��

A

(and

similarly, ⇤0
(t

A

,�

B

) = ��

B

). Equations (2) and (3) then become

NS
f

=

Z

⌦2
⇢(x

A

,y

A

) exp

⇢
��

Z
tA+�A

tA

�

"

�(rA(t))y⌅(rA(t),xB)dt

�
dx

A
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A

NS
b

=

Z
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) exp

⇢
��

Z
tA

tA��B

�

"

�(rA(t))y⌅(xa,x̂B)dt

�
dx

A

dy

A

.

(4)

7 Bounded uniform and isotropic spatial generation

The second distribution that needs to be set is the spatial generation of trips. As mentioned above,

we assume that trips start uniformly in the city, and that their destination is set at random inside a

disk centered at the origin. This boils down to assuming that all the trips have a length 0  l  R:

⇢(x,y, t) =

1
⇡R

2|⌦| y2D(x,R).

One can further simplify the previous expression by using simple shapes for the shareability shad-

ows "�(r) and ⌅(x,y). Precisely computing the regions with delays smaller than � for both vehicles

is heavy computationally and does not add much to the accuracy of the model. So for simplicity we

defined the regions as plain disks and rectangles:

"

�
(r) = D (r,�v) , ⌅(x,y) = R(x,y,�v),

where D(x, r) stands for a 2-dimensional disk of radius r centered at x and R(x,y,�v) for a rect-

angle of axis [x,y] and width 2�v. We further disregard border effects, and assume that conditions

for shareability are the same for all trips, including those starting close to the city edge. Dealing with

border effects would imply cumbersome changes in the mathematical derivations, while providing

little improvement in terms of model accuracy due to the fact that the overwhelming majority of trips

occur far from the city boundaries.

7.1 Forward probability NS
f

The assumptions we just described allow us to develop Equations (4) and compute the shareability as

follows:
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where

L =

�(v�)

3
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7.2 Backward probability NS
b

The backward probability can also be approximated as

A0
(t|t
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By combining the expressions for the forward and backward probabilities, we obtain the main result

of our model: the probability of a trip to be shareable is given by

S = 1�NS
f

· NS
b

= 1� 1

2L

3
(1� e

�L

)(1� (1 + 2L)e

�2L
). (5)

In the next two subsections, it will be convenient to consider shareability as a function of � and v, we

thus write it S(�, v).

8 Interpolation for time generation

A strong assumption made in the previous analysis is the constant rate in the Poisson process. Trip

generation rate is indeed highly dependent on the time of the day, as the analysis of the taxi trip data

sets clearly shows; see Fig. S6(D). The most basic approach to address this problem is to disregard

hourly fluctuations in trip rate generation, and simply set the trip generation rate as the average daily



rate. A more accurate approach, which we call interpolation in the following, is to divide the day into

hour-long bins, and to consider piecewise constant generation rates during each hour (i.e. assume that

rates vary slowly compared to trip durations). Formally, let {T0, T1, . . . , Tn

} be a subsystem of [0, T ]

such that 8i 2 {0, n � 1}, t 2 [T

i

, T

i+1[,�(t) = �

i

and the T

i

are large compared to the average

duration of trips. For such a rate curve, the shareability is equal to

S({�
i

}, v) =

nX

i=1

S(�
i

, v)�

i

T

i

nX

i=1

�

i

T

i

.

Shareability is then computed as a weighted average of the hourly shareability values.

The hourly rates for New York, San Francisco, Singapore, and Vienna are plotted on Fig. S6(D).

When studying the impact of the daily number of trips on the shareability, we considered a random

subsample of said trips, which boils down to multiplying all the �

i

by a number p 2 [0, 1]. Applying

the interpolation to our four cities marginally improves the model accuracy (97.7 to 98.9% for New

York, 95.1 to 97.7% for San Francisco, 94.9 to 95.0% for Singapore and 91.2 to 91.4% for Vienna).

The limited influence of trip generation rate interpolation on the shareability curves is due to the fact

that most trips happen during day time, where the variations in � are quite mild. That observation

suggests that the predictions of the model should be accurate also for those cities where the exact

hourly rates are unknown.

9 Second-order effect on vehicle speed

The average speed of cars in cities is a decreasing function of traffic. Having an analytic function for

shareability allows us to take that fact into account rather easily. In a shared economy, the decreased

number of cars on the road will generate a lower congestion, a higher average speed, and thus a larger

shareability (which is obviously an increasing function of v as stated before and seen from Equation

(5). Let us expand the framework by defining the following quantities:

– a function ṽ(�) that associates the density of trips to the average speed of cars in the city,

– a number µ defining the fraction of people willing to share their trips,



– ˜

�(s) = �� s

2µ�, the function giving the trip generation rate if a fraction s of the people willing

to share do find a matching trip (we limit our study to at most two people sharing the same ride).

This last point assumes that shareable trips follow the same spatiotemporal distribution as original

ones. The “second-order” effect mentioned above can now be taken into account to define the actual

shareability in the city. For given �, µ > 0 and city area |⌦|, we define

F : [0, 1] ! [0, 1]

s 7! S(�µ, ṽ(˜�(s))).

The shareability that will be reached is the unique fixed point s⇤ of F . Its existence and uniqueness

are guaranteed by the following facts:

– F is increasing (S is increasing with respect to its second argument, and ṽ and ˜

� are both

decreasing),

– F(0) > 0 and F(1) < 1.

To obtain empirical results taking that effect into account requires knowing the function ṽ(�). We do

not have it at our disposal. However, the increasing pervasiveness of sensors in the urban area will

undoubtedly lead to such knowledge, and eventually to better predictions of shareability.


