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Abstract
Building high-quality bicycle networks requires knowledge of existing bicycle infrastructure.
However, bicycle network data from governmental agencies or crowdsourced projects like
OpenStreetMap often suffer from unknown, heterogeneous, or low quality, which hampers the
green transition of human mobility. In particular, bicycle-specific data have peculiarities that require
a tailor-made, reproducible quality assessment pipeline: For example, bicycle networks are much
more fragmented than road networks, or are mapped with inconsistent data models. To fill this gap,
we introduce BikeDNA, an open-source tool for reproducible quality assessment tailored to
bicycle infrastructure data with a focus on network structure and connectivity. BikeDNA performs
either a standalone analysis of one data set or a comparative analysis between OpenStreetMap and a
reference data set, including feature matching. Data quality metrics are considered both globally for
the entire study area and locally on grid cell level, thus exposing spatial variation in data quality.
Interactive maps and HTML/PDF reports are generated to facilitate the visual exploration and
communication of results. BikeDNA supports quality assessments of bicycle infrastructure data for
a wide range of applications—from urban planning to OpenStreetMap data improvement or
network research for sustainable mobility.
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Introduction

Cities across the globe are striving to make their transportation systems more environmentally and
socially sustainable. One of the most cost-effective ways to do so is to boost cycling, like in Paris or
Bogotá (C40 Cities, 2019; City Of Paris 2021), and as recommended by the European Commission
and the IPCC (EC, 2021; Jaramillo et al., 2022). However, achieving a substantial shift towards
cycling remains a challenge. Adequate infrastructure is typically lacking, as is the collection and
provision of data on bicycle infrastructure, which is necessary to harness the potential of data-driven
bicycle network planning. Recent advances demonstrate that quantitative analyses of bicycle in-
frastructure on the network level can assist planning decisions and considerably improve the impact
of planned investments (Natera Orozco et al., 2020; Olmos et al., 2020; Steinacker et al., 2022; Szell
et al., 2022; Vybornova et al., 2022), but the necessary precondition of readily available and
complete bicycle infrastructure data is typically not fulfilled. Moreover, even when such data are
available, there is often little knowledge on data quality. This is true both for administrative data and
for crowdsourced data such as OpenStreetMap (OSM) (Nelson et al., 2021; Rambøll 2022).

Further, because of the persistent political and financial constraints of bicycle network planning
(Cox 2020), bicycle networks are qualitatively different from road and public transport networks.
Networks of designated bicycle infrastructure consist of a much high number of disconnected
components and have a much lower degree of connectivity than road networks for motorized
transport—even in famously bicycle-friendly cities like Copenhagen (Natera Orozco et al., 2020).
This high degree of fragmentation poses a challenge when applying standard Geographical In-
formation System (GIS) tools to investigate network quality issues, since it becomes impossible to
judge in an automated manner whether over/undershoots and disconnected components are due to
poor data quality or an accurate representation of the (poorly connected) network.

To fill this gap and to help researchers, planners, and others in the field assess the quality of
bicycle infrastructure data, we introduce BikeDNA (Bicycle Infrastructure Data and Network
Assessment). BikeDNA is a computational tool written in Python that performs a reproducible
quality assessment on one or two bicycle infrastructure data sets (see Figure S1 in the Supple-
mentary Material). The default definition of “bicycle infrastructure” in BikeDNA is any part of the
road network that is designated specifically for cycling, that is, protected bicycle infrastructure plus
designated bicycle lanes; this definition can be modified by the user, for example, to include
residential or low-traffic streets. BikeDNA can perform standalone analysis of either OSM or
administrative data. If both OSM and administrative data are available, BikeDNA compares
differences between the two data sets. To our knowledge, there are currently no other open-source
tools for reproducible data quality assessment available that are tailored to the peculiar nature of
bicycle infrastructure data.

Previous research on spatial data quality

While BikeDNA is designed to be compatible with both crowdsourced and administrative data on
bicycle infrastructure, the quality assessment of OSM data is a central feature of the tool due to the
widespread usage of OSM for bicycle network research (Ferster et al., 2020; Nelson et al., 2021).
Much recent work on spatial data quality has moreover focused on the quality of crowdsourced or
volunteered data, in attempts to build trust in data sets from non-official sources. Our review of
previous work is therefore focused on quality assessment of crowdsourced road network data. For
more comprehensive reviews of quality assessment methods for Volunteered Geographic Infor-
mation (VGI), we refer to Fonte (2017), Senaratne et al. (2017), and Degrossi et al. (2018). For an
overview of solutions for spatial data quality more generally, see Medeiros and Holanda (2019).
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Intrinsic versus extrinsic analysis. A common way to classify spatial data quality assessment methods
is as either “intrinsic” (standalone) or “extrinsic” (comparative)—a classification also used by
BikeDNA. Intrinsic methods study inherent properties of the data set itself or how it was created,
while extrinsic methods make use of an external reference data set for comparison. Early work on
VGI data quality was primarily occupied with extrinsic evaluations with an emphasis on evaluating
the completeness and spatial accuracy, using local metrics for the length of the mapped network in
an area (Haklay 2010) as well as more advanced methods for feature matching (Koukoletsos et al.,
2012). While data completeness and accuracy are relevant data quality metrics, they do not address
topological quality, that is, how network elements are connected structurally, which, however, is
crucial for many applications of road network data (see Figure 1). For this reason, extrinsic ap-
proaches were quickly expanded to also include road network topology, routing, and other network
attributes (Girres and Touya 2010; Mondzech and Sester 2011; Neis et al., 2012; Zielstra and
Hochmair 2012; Graser et al., 2014). Intrinsic evaluations of VGI data quality have been developed
for situations where no reference data are available, or to avoid some of the more computationally
intensive methods used in extrinsic comparisons. Methods for intrinsic evaluation analyze the
spatial and structural dimensions of the data (Neis et al., 2012; Barron et al., 2014), as well as the

Figure 1. Known quality issues in bicycle infrastructure data. a) Different aspects of data quality assessment:
Accuracy (left) versus topology (right). Early research on spatial data quality focused on accuracy, while
BikeDNA puts a special emphasis on topology. Adapted from Haklay et al. (2010) and Neis et al. (2012). b)
Errors of omission (left) or commission (right) result in differing data completeness. c) Misclassification leads to
different types of bicycle infrastructure in two corresponding data sets (red vs black). d) Edge undershoot
(left) and edge overshoot (right). e) Mapping of bicycle infrastructure to the centerline of the road (red) or on
the side (black). In this case, the centerline mapping creates routable network data at the cost of accuracy.

514 EPB: Urban Analytics and City Science 51(2)



number of contributors and edits (Keßler et al., 2011; Neis et al., 2013; Barron et al., 2014;
Gröchenig et al., 2014). Extrinsic and intrinsic methods are often used in combination, sometimes in
more elaborate frameworks for assessing spatial data quality (Barron et al., 2014; Ballatore and Zipf
2015), as it is the case for BikeDNA.

Quality standards and fitness for purpose. Another way to classify existing approaches to spatial data
quality is to distinguish between the formulation of standards for spatial data quality versus the idea
of “fitness for purpose.” Following the former approach, for example, ISO 19157 defines spatial
data quality as composed of: accuracy (positional, thematic, and temporal); data completeness;
internal logical consistency; and finally, usability (Fonte 2017). While these are useful concepts that
are used throughout the quality assessment in BikeDNA, the consistency implied by formal
standards for data quality is difficult to apply to heterogeneous, volunteered data like OSM
(Hashemi and Abbaspour 2015), and might be less relevant for some use cases. Therefore, Barron
et al. (2014) suggest to instead evaluate OSM data based on fitness for purpose, meaning that the
quality and suitability of a data set are evaluated based on whether the data fulfill the requirements
for the individual use case. This is also the approach adopted in BikeDNA. Therefore, instead of
referencing universal standards, BikeDNA is designed to help decide whether a data set is good
enough for an intended use case.

Gaps in network-level bicycle data assessment and tools. Only few studies of quality assessments
specifically of bicycle infrastructure data exist, with Hochmair et al. (2015) and Ferster et al. (2020)
as the most prominent examples. Both studies compare OSM data on dedicated bicycle infra-
structure to external reference data sets, assessing data completeness generally and for different
types of bicycle infrastructure. This is of particular interest, since studies on the general com-
pleteness of OSM have shown that bicycle lanes and paths often are among the later features to be
mapped (Neis et al., 2012; Barron et al., 2014). These studies provide important insights into the
completeness of bicycle infrastructure data in OSM, but they do not sufficiently address network
topology. This is a highly relevant research gap, since infrastructure data for pedestrians and cyclists
are more prone to topological errors than data for motorized transport (Neis et al., 2012). Many of
the assumptions used to evaluate road networks for car traffic, for example, interpreting discon-
nected components and small gaps between edges as errors, do furthermore not hold for bicycle
networks which are often built in a fragmented and piece-wise manner (Natera Orozco et al., 2020;
Szell et al., 2022).

Overall, the quality of OSM data is well-studied, particularly when it comes to data on the car
road network (Fonte 2017), and OSM data are often shown to be of high quality compared to other
data sources (Neis et al., 2012; Zielstra and Hochmair 2012; Hochmair et al., 2015; Ferster et al.,
2020; Zhang et al., 2021). However, data errors and inconsistencies are not randomly distributed in
OSM, but instead correlate with lower population densities and socioeconomic variables; vary from
country to country; and differ for different parts of the transportation network (Haklay 2010;
Mondzech and Sester 2011; Ziemke et al., 2019; Ferster et al., 2020). Administrative data have also
been shown to suffer from uneven data quality, for example, due to the role of local data maintainers
and differing mapping practices (Hvingel and Jensen 2023). For this reason, quality assessment in
one particular location cannot be generalized to other locations. Moreover, the quality of data on
bicycle infrastructure often lags behind the quality of other road network data, both in terms of
completeness and consistency. While previous research does not identify any single reason for the
quality differences between different parts of the road network, Ferster et al. (2020) and Hvingel and
Jensen (2023) point to differing mapping practices when looking at OSM and administrative data.
Paths and other infrastructure for active mobility are furthermore often among the later features to be
mapped in OSM (Neis et al., 2012), leaving less time for errors to be identified and corrected.
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Although these findings have profound implications for bicycle research that uses OSM data, to date
only few studies have assessed specifically the quality of bicycle infrastructure data in OSM. In
short, the lack of studies and tools that assess how well bicycle infrastructure has been mapped is a
considerable barrier to OSM data uptake and to data-driven bicycle network planning.

Filling the gap with BikeDNA

To address the lack of available tools tailored particularly to bicycle network quality assessment, we
have developed BikeDNA. The tool contains a systematic and easy-to-follow quality assessment of
bicycle infrastructure data. This is relevant for use cases such as bicycle routing (Murphy and Owen
2019), connectivity analysis (Natera Orozco et al., 2020; Vybornova et al., 2022), network quality
assessment (Dill 2004), and accessibility studies (PeopleForBikes 2023). BikeDNA implements
and visualizes a wide range of existing spatial VGI data quality metrics, but is tailored specifically to
bicycle infrastructure data. The main features of BikeDNA are:

· Analysis of completeness, network density, and OSM tags
· Analysis of network topology and connectivity
· Feature matching between OSM and reference data
· Creation of detailed PDF and interactive HTML reports

BikeDNA thus addresses both data completeness, that is, how much information each data set
contains, and data consistency. BikeDNA moreover accounts for different scenarios of data
availability and can be applied in scenarios where only OSM, only reference data, or both are
available. All data quality metrics, whenever relevant, are computed globally for the entire study
area and locally for each cell in a grid covering the study area, which allows to detect local variations
in data quality. The quality metrics are made accessible by extensive documentation and inter-
pretation assistance in each step, and automated plotting of results with static and interactive maps.
BikeDNA can help improve the quality of a data set by pinpointing both in which features and
which locations gaps, errors, or inconsistencies exist. Potential users are researchers, planners, data
maintainers, and everyone else who needs an indication of bicycle infrastructure data quality.

The rest of the paper is organized as follows: In the next section, we outline the concepts
of evaluating bicycle infrastructure data quality. Then, we provide a descriptive overview
of BikeDNA: First, we show how to use BikeDNA, then we provide example outputs of
BikeDNA’s quality assessment of OSM and the open government data “GeoDanmark” for a
showcase area in Greater Copenhagen, Denmark. We conclude with a discussion of limitations
and the need for future work on bicycle data quality. In addition, we outline possible im-
provements to BikeDNA and quality assessments more generally. For a description of the
technical setup and analysis workflow, we refer to the Supplementary Material and Figure S1.
BikeDNA makes extensive use of existing open-source Python libraries (Jordahl et al., 2021;
Boeing 2017; Hagberg et al., 2008; Fleischmann 2019). The full description and technical
specifications of BikeDNA are available on GitHub: https://github.com/anerv/BikeDNA.

Evaluating bicycle infrastructure data

In the following section, we introduce the analytical framework with an overview of the different
scenarios of data availability and data sources considered by BikeDNA, describe known data quality
issues in bicycle infrastructure data, and discuss how to perform and interpret quality assessments
without ground truth data.
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Data sources

BikeDNA considers three different scenarios of data availability for bicycle networks: either data
are available from OSM; data are available from an administrative source, for example, a local
municipality; or data are available from both. OSM is the primary data source for data used in
bicycle research and routing applications. To our knowledge, administrative data are used primarily
by governmental institutions. OSM and administrative data are not necessarily at odds, since OSM
data sometimes are partly based on administrative data (Zielstra et al., 2013; Rambøll 2022).

Bicycle infrastructure data from OSM are in many cases of a similar or higher quality than
administrative data when it comes to aspects such as data completeness (Hochmair et al., 2015;
Ferster et al., 2020). This is partly due to a lack of government resources, as well as the unfavorable
treatment of active mobility in data collection in many jurisdictions (Rambøll 2022). The inherently
heterogeneous nature of VGI data, combined with the lack of metadata on data quality parameters,
does, however, pose a barrier to data uptake in, for example, public transport planning (Hashemi and
Abbaspour 2015). The lack of standardized quality assurance for crowdsourced data necessitates
methods for local data quality assessment, as offered by BikeDNA.

Known quality issues

Within the fitness for purpose approach, it depends on the use case whether specific data errors are
considered a problem. For example, spatial inaccuracies such as smaller displacements of objects
are rarely an issue for network-based bicycle research, as long as the data topology is correctly
represented (see Figure 1a). There are, however, several types of errors and inconsistencies which
will be a problem for most data applications, and which we briefly explain below.

Errors of omission/commission. “Errors of omission” describe missing data, while “errors of com-
mission” refer to features in the data set that should not be there (see Figure 1b). These error types
appear in both OSM and administrative data sets on bicycle infrastructure (Hochmair et al., 2015;
Ferster et al., 2020).

Misclassification. Misclassification happens when bicycle infrastructure is classified as something
else, or when non-bicycle infrastructure is classified as bicycle infrastructure, resulting in errors of
omission and commission, respectively (see Figure 1c). For example, unprotected bicycle infra-
structure might be misclassified as protected, which has implications for example for Levels of
Traffic Stress (Mekuria et al., 2012). Different types of misclassification errors have been docu-
mented in previous research on the quality of OSM bicycle infrastructure data (Hochmair et al.,
2015; Ferster et al., 2020).

Topology errors. Topology errors occur where network edges are not properly connected at in-
tersections, either because of a missing node at intersections, or in situations of “undershoots” (one
or more edges are too short and thus do not connect at an intersection) or “overshoots” (one or more
edges are too long at an intersection, which creates small edges with dangling nodes), as shown in
Figure 1d. Within OSM, this type of problem is more prominent for bicycle infrastructure than for
other types of the road network (Neis et al., 2012). Undershoots are a particularly common feature in
networks of designated bicycle infrastructure, which typically are fragmented. Therefore, they have
a high potential to identify real infrastructure gaps and not just data quality issues (Natera Orozco
et al., 2020; Vybornova et al., 2022). When working with only a subset of the OSM network, such as
that of designated bicycle infrastructure, topology errors can also emerge when OSM edges leading
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up to an intersection have not been tagged as bicycle infrastructure (see section Undershoots in
subsets of road networks and Figure S2 in the Supplementary Material).

Inconsistent mapping procedures. While not technically an error, differing mapping methods make it
difficult to assess data completeness. Within some approaches, bicycle lanes are digitized as road
center lines, regardless of whether only one or both sides of the road have a bicycle lane. Other
approaches digitize bicycle lanes as their individual geometries, in which case bicycle lanes on two
sides of the same road are represented separately in the data set (see Figure 1e for an illustration).
This can significantly distort measurements of network density and network length and makes it
complicated to compare data sets that are based on differing mapping approaches. Other studies
have approached this challenge by only including one lane in length computations (Hochmair et al.,
2015) or by generalizing parallel lines to the center line (Ferster et al., 2020).

Quality assessment without ground truth data

The absence of ground truth or authoritative data sets on bicycle infrastructure is a challenge—not
only for bicycle planners and researchers, but for anyone attempting to assess data quality. Without
validation data, data quality assessment cannot be fully automated. Moreover, given the fragmented,
low-quality nature of many actual bicycle networks, it is often impossible to distinguish in an
automated way whether a poor performance of a data quality metric is due to low data quality or due
to low quality of the infrastructure itself. For these reasons, BikeDNA does not issue any final
verdict about the quality of the analyzed data sets. Rather, it allows for exploring different
characteristics of the data which, in combination with local knowledge, can help make a better-
informed assessment of the data quality and potential limitations to the data usability. As pointed out
by Brovelli et al. (2017) and Ferster et al. (2020), local knowledge of both on-the-ground conditions
and OSM mapping norms is crucial for verification and interpretation of quality assessments.
Accordingly, BikeDNA emphasizes the relevance of local knowledge for any kind of planning or
research process.

What BikeDNA does

In this section, we present the main features and outputs of BikeDNA by the example of an area in
Greater Copenhagen, using a local data set from GeoDanmark (GeoDanmark 2023) as the reference
data (see Figures 2a and 2b). Detailed elaborations of methodology and interpretation of results are
found in the analysis notebooks. All code and results can be found on the “GeoDanmark” branch on
the GitHub repository.

Global and local analysis

BikeDNA conducts analysis on two levels: global and local. In global analysis steps, aggregated
metrics are computed for the entire study area. Some results, such as the total network length, are
only meaningful on a global scale. For some data inconsistencies, however, we do not only want to
know whether they occur, but also where they happen. Their location is particularly relevant
because of the spatial heterogeneity in locations of high and low data quality that often characterize
crowdsourced data (Haklay 2010). Therefore, in the local analysis steps, BikeDNA computes
metrics separately for each grid cell on a customizable square grid that covers the study area.
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Network density

The density of a transportation network is defined as the length of edges or number of nodes per
square kilometer, which is the most basic descriptive statistic that can indicate data completeness.
Comparing completeness between two bicycle infrastructure data sets based on network density is
notoriously difficult due to differing mapping approaches and data models (see Figure 1e). OSM
implements both methods for mapping bicycle infrastructure, as discussed in the section Incon-
sistent mapping procedures above. Therefore, BikeDNA computes the edge density based on the
infrastructure length, not geometric edge length. For example, a 100-meter-long bidirectional path is
counted as 200 m of bicycle infrastructure. This allows to compare data completeness between data
sets with differing mapping approaches.

Figure 2. Input data for the showcase area from a) OSM and b) GeoDanmark. Results from intrinsic analysis
of OSM and GeoDanmark data: c) OSM edge density. d) Missing OSM tags. e) Disconnected components. f)
Example of an undershoot. g) Edges from two disconnected components with less than the specified distance
threshold between them. Maps created with BikeDNA v.1.0.0.
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The analysis requires a simplified network in order not to count interstitial network nodes (i.e.,
nodes that do not represent intersections or dead-ends) in the computation of network density. For
this reason, both OSM and reference networks are simplified using a modified OSMnx function
(Sebastiao 2022) for network simplification, which keeps nodes only at intersections and dead-ends,
as well as at locations where the value of important attributes changes.

Within the intrinsic analysis, network density values can indicate under- or over-mapped regions
of the study area, if the density pattern strongly deviates from expected patterns (see Figure 2c). In
the extrinsic analysis, contrasting network density values for OSM and the reference data set can be
used for comparing data completeness (Haklay 2010).

Consistency of OSM tags

One important characteristic of OSM data on bicycle infrastructure is the highly heterogeneous
distribution of tags (e.g., width, speed limits, street lights, or other characteristics of interest to
cyclists), which poses a barrier to evaluations of, for example, bikeability (Wasserman et al., 2019).
Likewise, the lack of restrictions on OSM tagging can lead to conflicting tags, which undermines the
evaluation of bicycle conditions. For this reason, BikeDNA allows for checking the consistency of
tags in OSM, tailored to OSM’s data structure. BikeDNA conducts analysis of OSM tags in three
ways: by identifying and visualizing where user-defined OSM tags are lacking information (see
Figure 2d); by highlighting where edges are labeled with two or more tags defined as contradictory
by the user; and finally, by visualizing tagging patterns, that is, the spatial variation in tags that are
used to describe bicycle infrastructure in OSM. In addition, BikeDNA makes use of OSM tags to
identify missing intersection nodes: when two edges intersect without having a node at the in-
tersection and neither of them is tagged as bridge or tunnel, it is an indication of a topology error
(Neis et al., 2012; Barron et al., 2014).

Network topology: Under/overshoots and dangling nodes

BikeDNA implements two methods for checking the consistency of network topology at inter-
sections and dead-ends: analysis of undershoots and overshoots (see Figures 1 and 2f), and analysis
of dangling nodes. Under/overshoots commonly occur due to errors in data digitization, but can also
be an accurate representation of network conditions, for example when protected bicycle lanes end
in intersections that do not provide protection for cyclists. The presence of over- and under-shoots
skews the ratio of nodes and edges in a network, and thereby distorts network metric computation.
Moreover, undershoots in bicycle infrastructure hinder correct routing for cyclists on the network.
BikeDNA finds all over/undershoots within a user-defined distance threshold and displays them for
further analysis.

Dangling nodes are nodes of degree one, that is, nodes that have only one single edge attached to
them. Most infrastructure networks will naturally contain a number of dangling nodes at actual
dead-ends or at the endpoints of certain features, for example, when a bicycle path ends in the
middle of a road. However, they can also be a consequence of under/overshoots or data omissions. It
is important to understand whether dangling nodes are caused by actual dead-ends or by digitization
errors. BikeDNA therefore visualizes individual dangling nodes and their density on grid cell level
to allow investigation of their spatial heterogeneity.

Network topology: Disconnected components

A network component is a maximal set of nodes which are linked by paths. In other words, all nodes
within a component can reach each other, but they cannot reach any nodes in the rest of the network.
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Most real-world bicycle infrastructure networks consist of many disconnected components (Natera
Orozco et al., 2020) (see Figure 2e). Two disconnected components that are very close to each other
can, however, be a sign of a real “missing link” (Vybornova et al., 2022) or of a digitizing error
similar to an undershoot (see Figure 2g). BikeDNA identifies and visualizes all disconnected
components of the input network and plots the distribution of all network component lengths on a
Zipf plot, which ranks the lengths of all components by descending order. When a Zipf plot follows
a straight line in log-log scale, it means that there is a much higher chance to find small disconnected
components than expected from traditional exponential distributions (Clauset et al., 2009). This can
mean that there has been no consolidation of the network and elements have been added only piece-
wise or randomly (Szell et al., 2022). However, it can also happen that the largest connected
component (see the leftmost marker in Figure 3a at rank 100 = 1) is a clear outlier, while the rest of
the plot follows a different shape. This can mean that network consolidation has taken place. In case
of a comparison over the same region, as shown in Figure 3, if one data set shows a clear outlier in its
largest connected component while the other data set does not, it can be an indication that the first
data set is more complete. In this particular case, the OSM data set (Figure 3a) is likely more
complete than the reference data (Figure 3b).

Two disconnected components of bicycle infrastructure might of course be connected by other
types of infrastructure, if the entire road network is considered. However, erroneous lack of
connections between components of dedicated bicycle infrastructure poses a problem for bicycle
routing and will lead to misleading or undesirable results when evaluating bicycle accessibility and
Level of Traffic Stress (Murphy and Owen 2019; Wasserman et al., 2019). BikeDNA therefore also
identifies potential missing connections between components by finding and highlighting edges
from disconnected components that are within a user-defined distance threshold from each other.
BikeDNA furthermore conducts a component connectivity analysis on grid cell level, visualizing
differences in number of cells reachable from each cell. This measure is particularly useful for
comparing and quantifying network reach and connectivity between two data sets (see Figures 3c
and 3d).

Feature matching

Feature matching is the process of identifying which features from two different data sets cor-
respond to the same real-life object. For example, the same road might be represented by slightly
different geometries in two different data sets. Feature matching is necessary for a comparison of
individual features, rather than feature densities. BikeDNA includes a feature matching algorithm
which identifies corresponding edge segments between the reference and OSM data sets (see
Figures 3g and 3h). The matching algorithm uses the undirected Hausdorff distance and angle
between line segments to identify the best potential match from edges within a maximum search
distance (Koukoletsos et al., 2012; Will 2014). For further details on the matching procedure, see
section Feature matching and Figure S4 in the Supplementary Material.

Comparing OSM and reference data

If a reference data set is provided, BikeDNA compares and contrasts it with OSM data from the
same area, highlighting how and where the two data sets differ, that is, both how much bicycle
infrastructure is mapped in the two data sets and how the infrastructure is mapped. The comparative
analysis makes no prior assumptions about which data set is of higher quality. BikeDNA does thus
not lead to an automatic conclusion, but instead requires interpretation of the differences, for
example, whether differing features are results of errors of omission or commission, and which data
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Figure 3. Extrinsic analysis based on a comparison of intrinsic results: Zipf plots of a) OSM and b)
GeoDanmark component length distribution. Percent of cells reachable through c) the OSM and d) the
reference networks. Extrinsic analysis of differences betweenOSM and reference data: e) Comparison of edge
density per grid cell. f) Largest connected components. Feature matching: g) Matched (blue) and unmatched
(red). h) Matched OSM features with same protection level in both data sets (blue) and differing protection
levels (red). Maps created with BikeDNA v.1.0.0.
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set is more fit for purpose. The differences between the data sets are computed and presented on a
global and local level, and overlaid where visually adequate (see Figures 3e and 3f).

Discussion

In the following section, we sum up BikeDNA’s findings for our showcase area in Greater Co-
penhagen, and present the general contributions of BikeDNA. We end the section with a discussion
of BikeDNA’s limitations and recommendations for future work.

Substantial problems with data quality persist

The results from the showcase area demonstrate that data quality issues can result in misleading
representation of actual bicycle conditions, both in terms of the extent and the connectivity of the
bicycle network. Despite of Denmark being known for its strong bicycle culture (Agervig and Ebert
2012), our analysis found several serious issues with bicycle infrastructure data quality, particularly
in the administrative reference data set, with large areas being significantly under-mapped. Both
OSM and the reference data were moreover suffering from missing links and undershoots resulting
in data sets which are substantially more fragmented than the actual bicycle network. Importantly,
the analysis indicated large spatial variations in missing or misleading data, which highlights the
importance of localized data assessments.

BikeDNA: A tool for bicycle researchers, planners, and cyclists

BikeDNA provides fundamentally new insights into bicycle infrastructure data quality by enabling
straightforward exploration of spatial heterogeneity in data quality, and by implementing network-
based measures that go beyond quality indicators traditionally applied on bicycle infrastructure data.
These novel features open up a plethora of use cases, such as:

· Urban and regional planning of bicycle infrastructure, where considering the network as a
whole is particularly important (Szell et al., 2022).

· Improvement of OSM and administrative data.
· Transport research on active mobility and on multi-modal networks which require high data

quality on all transport layers (Alessandretti et al., 2022).
· Improvements to bicycle network data used in tools for transport planning and research, such

as “Propensity to Cycle” for transport planning (Lovelace et al., 2017), “A/B Street” for traffic
simulation (Carlino et al., 2023), and People for Bike’s Bicycle Network Analysis
(PeopleForBikes 2023).

· Citizen science, by enabling citizens’ contributions to reliable and quality-assessed data sets,
along the lines of other projects supporting citizen data collection for more sustainable
transport, such as OpenBikeSensor (2023) and StreetComplete (2023).

Ensuring high-quality data is particularly vital considering the recent growth in bicycle network
research. Existing data should be scrutinized prior to their usage, to make sure that research results
are not undermined by low data quality.

Limitations

Although we attempted to cover the main aspects of data quality relevant to bicycle networks, there
are some limitations in the design of BikeDNA.
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In terms of data modeling, BikeDNA makes use of an undirected, simplified network. This
means that information about allowed travel directions and turn restrictions is not considered,
movement is assumed in both directions on all edges, and different travel directions on the same
road are not represented by separate edges. Therefore, the current state of the tool does not make use
of routing on the network. For future iterations, it might be useful to include travel directions and the
underlying road network for accurate path computations.

Another limitation touches upon the core purpose of the tool and the type of results it can
produce: since we do not operate with one data set as ground truth against which another data set is
evaluated, we cannot conclude where the error lies when differences are identified. For a successful
application of BikeDNA, the user is thus expected to have some familiarity with OSM data structure
and tagging conventions, but also to have enough knowledge of the study area to correctly interpret
the results.

Lastly, we do not directly evaluate the positional accuracy of neither the OSM or the reference
data—although a certain level of comparative positional accuracy can be deduced from the feature
matching.

Future work

A lot of potential future work remains—not only for quality assessments of bicycle infrastructure
data generally, but also for BikeDNA.

First, it is yet to be determined whether any of the analyzed metrics can serve as a more general
predictor of data quality, based on correlations with other quality metrics. This would allow for a
much faster and simpler assessment and remove the need for reference data comparison and more
complex analytical tools. Second, the evaluation of bicycle infrastructure data quality in OSM and
other data sources should be considered in connection with broader efforts to standardize the
mapping of bicycle infrastructure. One challenge of comparing different data sets is translating
between different typologies of bicycle infrastructure. Within BikeDNA, we have solved this
ambiguity by only distinguishing between protected and unprotected bicycle infrastructure, but this
approach could be refined with better classification schemes. To support better planning and re-
search, more work is needed on how to best represent bicycle conditions in data.

For BikeDNA, a functionality for allowing an easy comparison of two non-OSM data sets
remains to be implemented. In addition, for the intrinsic analysis of OSM data, a future inclusion of
historical data on contributors and edits can offer a complementary perspective, since these metadata
are potential indicators of data quality (Neis et al., 2012; Gröchenig et al., 2014). A future iteration
of this work could aim at adjusting the BikeDNA pipeline to other types of networks, for example,
pedestrian infrastructure or public transit. Likewise, BikeDNA’s implementation of feature
matching could be enhanced to produce a standalone tool for other network types. Lastly, BikeDNA
could be re-implemented as a more user-friendly, interactive web app, to overcome the required
Python notebook know-how. We hope to hear from the community about future case studies and
will be grateful to receive suggestions for possible modifications and improvements to the current
tool.

Conclusion

BikeDNA is an open-source tool for reproducible quality assessments of bicycle infrastructure data.
BikeDNA allows for a customized evaluation based on the idea of “fitness of purpose” and comes
with a configurable design that can be adapted to different scenarios of data availability, using both
stand-alone and comparative methods. The tool computes a wide range of quality metrics and
extends previous research on bicycle infrastructure quality by adding a focus on data topology and
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structural properties. The provided example application of BikeDNA based on a comparison of
OSM and Danish administrative data has demonstrated that BikeDNA can reveal important spatial
variations, for example, in missing data and topology errors, and that quality assessments of bicycle
infrastructure data are necessary, as demonstrated by the many inconsistencies and errors revealed
by the example analysis. Some open questions remain, both for BikeDNA and more broadly,
regarding the definition and collection of high-quality data on bicycle infrastructure. The absence of
high-quality official data and recognized typologies for bicycle infrastructure reflects how active
mobility modes have been historically neglected. For cities, regions, and countries around the world
that strive to make use of recent advances in data-driven planning to expand their bicycle networks,
better data on existing bicycle conditions are urgently needed.
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